
- •1. Цифровая форма представления информации. Основные параметры цифровых сигналов
- •2. Ненасыщенный биполярный ключ: схема, принцип работы, передаточная характеристика
- •Ненасыщенный биполярный ключ
- •3. Биполярный насыщенный ключ с динамической нагрузкой: схема, принцип работы, характеристики
- •4. Насыщенный биполярный ключ. Схема, принцип работы, передаточная характеристика
- •Транзистор в режиме насыщения
- •Транзистор в режиме отсечки
- •Передаточная характеристика
- •5. Фоторезисторы: устройство, принцип работы, основные параметры и характеристики
- •Основные параметры фоторезисторов
- •6. Светодиоды: принцип действия, виды, параметры и характеристики
- •Основные параметры
- •8. Оптоволоконные кабели: виды, основные параметры Строение оптокабеля
- •Параметры оптокабеля:
- •Виды кабелей:
- •Параметры передачи данных
- •Виды кабелей по месту прокладки:
- •9. Фотодиоды: принцип действия, виды, параметры и характеристики
- •Класификация
- •Вольт-амперная характеристика
- •10. Полупроводниковые диоды: устройство, принцип действия.
- •Принцип работы
- •11. Стабисторы: принцип работы, параметры и характеристики
- •12. Полупроводниковый стабилитрон: принцип действия, параметры и характеристики
- •Параметры
- •Примеры характеристик
- •13. Диоды Шоттки: устройство, принцип действия, основные параметры
- •Свойства диодов Шоттки
- •14. Импульсный режим работы полупроводникового диода
- •15. Биполярные транзисторы: устройство, принцип действия, режимы работы, система параметров и характеристик.
- •16. Схемы включения биполярных транзисторов, их параметры и характеристики.
- •17. Полевые транзисторы с индуцированным каналом n-типа: устройство, принцип действия, параметры и характеристики.
- •Предельные эксплуатационные параметры
- •19. Полевые транзисторы с встроенным каналом n-типа: устройство, принцип действия, параметры и характеристики
- •20. Полевые транзисторы с управляющим p/n переходом и каналом n-типа: устройство, принцип действия, управляющая характеристика
- •21. Основные этапы производства интегральных микросхем
- •22. Цифровые интегральные микросхемы: статические и динамические параметры
- •23. Интегральные микросхемы – преобразователи уровней.
- •24. Элементы ттл с открытым коллектором: схемотехника, принцип действия, параметры
- •25. Элементы ттл с тремя состояниями: схемотехника, принцип действия, параметры Элемент с тремя состояниями выхода
- •26. Логический элемент технологии ттлш с пониженной мощностью потребления: схема, принцип работы, передаточная характеристика технология ттлш с пониженной мощностью потребления
- •27. Инвертор кмоп: схемотехника, принцип действия, параметры и характеристики
- •Элемент не кмоп
- •2 8. Базовый логический элемент ттл: схемотехника, принцип работы, параметры и характеристики
- •29. Разновидности технологий ттлш
- •Разновидности Серии ттл-микросхем зарубежного производства
- •Серии ттл-микросхем отечественного производства
- •30. Кмоп элементы „и”, „или”: схемотехника, принцип работы
- •Элемент 2и
- •Элемент 2или
- •31. Элементы кмоп с тремя состояниями: схемотехника, принцип действия
- •32. Способы организации соединений в плис
- •33. Lut: назначение, принцип работы
- •34. Двунаправленный элемент ввода/вывода плис: схемотехника, принцип работы
- •Пример схемы блока ввода-вывода
- •35.Cpld, fpga: особенности функциональных схем
- •1)Конструкция, параметры и характеристики переменных и подстроечных резисторов
- •2. Конструкция, параметры и характеристики термисторов
- •3. Конструкция, параметры и характеристики варисторов
- •4. Конструкция, параметры и характеристики магниторезисторов
- •5. Какая из схем включения транзистора имеет:
- •6.Привести международную систему обозначений параметров биполярных транзисторов
- •7.Привести международную систему обозначений параметров полевых транзисторов
- •8. Система условных обозначений зарубежных фирм (на примере одной фирмы)
- •9.Привести примеры схем устройств с фотодиодами
- •10. Привести примеры схем устройств с оптопарами
- •11. Пример плис cpld
- •12. Пример плис fpga
6. Светодиоды: принцип действия, виды, параметры и характеристики
Светодио́д или светоизлучающий диод (СД, LED англ. Light-emitting diode) — полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.
Как и в нормальном полупроводниковом диоде, в светодиоде имеется p-n переход. При пропускании электрического тока в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).
Применение светодиодов
-Светодиодный фонарь для сценического освещения
-Применение светодиодов в светофоре
-Применение светодиодов в фарах
-В уличном, промышленном, бытовом освещении.
-В качестве индикаторов, в виде одиночных светодиодов (например индикатор включения на панели прибора) так и в виде цифрового или буквенно-цифрового табло (например цифры на часах)
-Массив светодиодов используется в больших уличных экранах, в бегущих строках. Такие массивы часто называют кластеры светодиодов, светодиодные кластеры, или просто кластеры.
-В оптопарах
-Мощные светодиоды используются как источник света в фонарях и светофорах
-Светодиоды используются в качестве источников модулированного оптического излучения (передача сигнала по оптоволокну, пульты ДУ, светотелефоны)
-В подсветке ЖК экранов (мобильные телефоны, цифровые фотоаппараты, мониторы и т. д.)
Основные параметры
Яркость свечения диода (кд/м2) при максимально допустимом прямом токе
Постоянное прямое напряжение Uпр при максимально допустимом прямом токе
- Максимально допустимый постоянный прямой ток Iпр
Максимально допустимое постоянное обратное напряжение Uобр.max
Длина волны излучения l
- Угол излучения a - плоский угол, в пределах которого сила света составляет не менее половины ее максимального значения
Характеристики
Спектральные характеристики излучения
Зависимость видности от длины волны
Спектральная
характеристика
Характеристика направленности
7. Диодные оптоэлектронные пары: устройство, принцип действия, параметры.
Оптрон (оптопара) — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприёмника (биполярных и полевых фототранзисторов, фотодиодов, фототиристоров, фоторезисторов), связанных оптическим каналом и как правило объединённых в общем корпусе. Принцип работы оптрона заключается в преобразовании электрического сигнала в свет, его передаче по оптическому каналу и последующем преобразовании обратно в электрический сигнал.
Виды диодных оптопар:
8. Оптоволоконные кабели: виды, основные параметры Строение оптокабеля