
- •1. Цифровая форма представления информации. Основные параметры цифровых сигналов
- •2. Ненасыщенный биполярный ключ: схема, принцип работы, передаточная характеристика
- •Ненасыщенный биполярный ключ
- •3. Биполярный насыщенный ключ с динамической нагрузкой: схема, принцип работы, характеристики
- •4. Насыщенный биполярный ключ. Схема, принцип работы, передаточная характеристика
- •Транзистор в режиме насыщения
- •Транзистор в режиме отсечки
- •Передаточная характеристика
- •5. Фоторезисторы: устройство, принцип работы, основные параметры и характеристики
- •Основные параметры фоторезисторов
- •6. Светодиоды: принцип действия, виды, параметры и характеристики
- •Основные параметры
- •8. Оптоволоконные кабели: виды, основные параметры Строение оптокабеля
- •Параметры оптокабеля:
- •Виды кабелей:
- •Параметры передачи данных
- •Виды кабелей по месту прокладки:
- •9. Фотодиоды: принцип действия, виды, параметры и характеристики
- •Класификация
- •Вольт-амперная характеристика
- •10. Полупроводниковые диоды: устройство, принцип действия.
- •Принцип работы
- •11. Стабисторы: принцип работы, параметры и характеристики
- •12. Полупроводниковый стабилитрон: принцип действия, параметры и характеристики
- •Параметры
- •Примеры характеристик
- •13. Диоды Шоттки: устройство, принцип действия, основные параметры
- •Свойства диодов Шоттки
- •14. Импульсный режим работы полупроводникового диода
- •15. Биполярные транзисторы: устройство, принцип действия, режимы работы, система параметров и характеристик.
- •16. Схемы включения биполярных транзисторов, их параметры и характеристики.
- •17. Полевые транзисторы с индуцированным каналом n-типа: устройство, принцип действия, параметры и характеристики.
- •Предельные эксплуатационные параметры
- •19. Полевые транзисторы с встроенным каналом n-типа: устройство, принцип действия, параметры и характеристики
- •20. Полевые транзисторы с управляющим p/n переходом и каналом n-типа: устройство, принцип действия, управляющая характеристика
- •21. Основные этапы производства интегральных микросхем
- •22. Цифровые интегральные микросхемы: статические и динамические параметры
- •23. Интегральные микросхемы – преобразователи уровней.
- •24. Элементы ттл с открытым коллектором: схемотехника, принцип действия, параметры
- •25. Элементы ттл с тремя состояниями: схемотехника, принцип действия, параметры Элемент с тремя состояниями выхода
- •26. Логический элемент технологии ттлш с пониженной мощностью потребления: схема, принцип работы, передаточная характеристика технология ттлш с пониженной мощностью потребления
- •27. Инвертор кмоп: схемотехника, принцип действия, параметры и характеристики
- •Элемент не кмоп
- •2 8. Базовый логический элемент ттл: схемотехника, принцип работы, параметры и характеристики
- •29. Разновидности технологий ттлш
- •Разновидности Серии ттл-микросхем зарубежного производства
- •Серии ттл-микросхем отечественного производства
- •30. Кмоп элементы „и”, „или”: схемотехника, принцип работы
- •Элемент 2и
- •Элемент 2или
- •31. Элементы кмоп с тремя состояниями: схемотехника, принцип действия
- •32. Способы организации соединений в плис
- •33. Lut: назначение, принцип работы
- •34. Двунаправленный элемент ввода/вывода плис: схемотехника, принцип работы
- •Пример схемы блока ввода-вывода
- •35.Cpld, fpga: особенности функциональных схем
- •1)Конструкция, параметры и характеристики переменных и подстроечных резисторов
- •2. Конструкция, параметры и характеристики термисторов
- •3. Конструкция, параметры и характеристики варисторов
- •4. Конструкция, параметры и характеристики магниторезисторов
- •5. Какая из схем включения транзистора имеет:
- •6.Привести международную систему обозначений параметров биполярных транзисторов
- •7.Привести международную систему обозначений параметров полевых транзисторов
- •8. Система условных обозначений зарубежных фирм (на примере одной фирмы)
- •9.Привести примеры схем устройств с фотодиодами
- •10. Привести примеры схем устройств с оптопарами
- •11. Пример плис cpld
- •12. Пример плис fpga
9.Привести примеры схем устройств с фотодиодами
В фотодиодах на основе p-n-переходов используется эффект разделения на границе электронно-дырочного перехода созданных оптическим излучением неосновных неравновесных носителей. Схематически фотодиод изображен на рисунке:
При попадании кванта света с энергией hγ в полосе собственного поглощения в полупроводнике возникает пара неравновесных носителей – электрон и дырка. При регистрации электрического сигнала необходимо зарегистрировать изменение концентраций носителя. Как правило, используется принцип регистрации неосновных носителей заряда.
При разомкнутой внешней цепи (SA разомкнут, R = ∞) для случая, когда внешнее напряжение отсутствует, ток через внешнюю цепь не протекает. В этом случае напряжение на выводах фотодиода будет максимальным. Эту величину VG называют напряжением холостого хода Vxx. Напряжение Vxx(фото ЭДС) можно также определить непосредственно, подключая к выводам фотодиода вольтметр, но внутреннее сопротивление вольтметра должно быть много больше сопротивления p-n–перехода. В режиме короткого замыкания (SA замкнут) напряжение на выводах фотодиода VG = 0. Ток короткого замыкания Iкз во внешней цепи равен фототоку Iф
Iкз = Iф
На рисунке показано семейство ВАХ фотодиода как при отрицательной, так и при положительной полярности фотодиода.
При положительных напряжениях VG ток фотодиода быстро возрастает (пропускное направление) с увеличением напряжения. При освещении же общий прямой ток через диод уменьшается, так как фототок направлен противоположно току от внешнего источника.
ВАХ p-n-перехода, располагаясь во 2 квадранте (VG > 0, I < 0), показывает, что фотодиод можно использовать как источник тока. На этом базируется принцип работы солнечных батарей на основе p-n-переходов (режим фотогенератора). Световая характеристика представляет собой зависимость величины фототока Iф от светового потока Ф, падающего на фотодиод. Сюда же относится и зависимость Vxx от величины светового потока. Количество электронно-дырочных пар, образующихся в фотодиоде при освещении, пропорционально количеству фотонов, падающих на фотодиод. Поэтому фототок будет пропорционален величине светового потока:
Iф = кФ,
где К - коэффициент пропорциональности, зависящий от параметров фотодиода.
При обратном смещении фотодиода ток во внешней цепи пропорционально световому потоку и не зависит от напряжения VG (режим фото-преобразователя). Фотодиоды являются быстродействующими приборами и работают на частотах 107- 1010 Гц. Фотодиоды широко применяются в оптопарах "cветодиод-фотодиод", а это схема простого фотореле. Это устройство с успехом можно применить где Вам угодно, для автоматической подсветки лотка DVD, для включения света или для сигнализации от проникновения в тёмный шкаф :) Предоставлены два варианта схемы. В одном варианте схема активируется светом, а другом его отсутствием.