Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по Моделированию.doc
Скачиваний:
111
Добавлен:
17.09.2019
Размер:
1.98 Mб
Скачать

Классификация математических моделей в зависимости от методов реализации (рис. 1.12)

Метод реализации модели относят к аналитическим, если он позволяет получить

выходные параметры виде аналитических выражений, т.е. выражений, в которых используется не более чем счетная совокупность арифметических операций и переходов к пределу. Примеры аналитических выражений:

Частным случаем аналитических выражений являются алгебраические выражения, в которых используется конечное или счетное число арифметических операций, операций возведения в целочисленную степень и извлечения корня. Примеры алгебраических выражений:

Очень часто аналитическое решение для модели представляют элементарных или специальных функциях: показательных, логарифмических, тригонометрических, гиперболических и т.п. Для потения значений этих функций при конкретных значениях вход-; параметров используют их разложение в ряды (например, Тейлора). Так, показательная функция может быть представлена следующим рядом:

Таким образом, значение функции при каждом значении аргумента в этом случае определяется приближенно. Модели, использующие подобный прием, называются приближенными.

Аналитические методы реализации модели являются более ценными в том плане, что позволяют с меньшими вычислительными затратами изучить свойства объекта моделирования применяя традиционные хорошо развитые математические методы анализа аналитических функций. Существенно, что применение аналитических методов возможно без использования ЭВМ (за исключением случаев, когда аналитическое решение определяется в рядах и для его доведения до числа требуются трудоемкие вычисления с применением ЭВМ). Кроме того, знание аналитического выражения для искомых параметров позволяет исследовать фундаментальные свойства объекта, его качественное поведение, строить новые гипотезы о его внутренней структуре. Следует отметить, что возможности аналитических методов существенно зависят от уровня развития соответствующих разделов математики.

В настоящее время мощный всплеск интереса к аналитическим методам при реализации моделей связан с появлением пакетов математических вычислений (Derive, MatLab, Mathcad, Maple, Mathematica, Scientific Workplace и др.). Спектр решаемых данными пакетами задач очень велик и постоянно расширяется (элементарная математика, символьные операции с полиномами, производными и интегралами, с векторами и матрицами, задачи теории поля и векторного анализа, метод конечных элементов и т.п.). Применение подобных программных средств не только упрощает процедуру получения аналитического решения, но и облегчает последующий анализ полученного решения с применением различного рода визуализаторов.; Достаточно подробное описание математических пакетов, их сравнение и анализ возможностей можно найти в [92].

К сожалению, существующие в настоящее время математические методы позволяют получить аналитические решения только для относительно несложных математических моделей в узком диапазоне значений параметров. В большинстве случаев при исследовании моделей приходится использовать алгоритмические подходы, позволяющие получить лишь приближенные значения искомых параметров.

При численном подходе совокупность математических соотношений модели заменяется конечномерным аналогом. Это чаще всего достигается дискретизацией исходных соотношений; т.е. переходом от функций непрерывного аргумента к функциям дискретного аргумента. После дискретизации исходной задачи выполняется построение вычислительного алгоритма, т.е. последовательности арифметических и логических действий, выполняемых на ЭВМ позволяющих за конечное число шагов получить решение дискретной задачи. Найденное решение дискретной задачи принимается за приближенное решение исходной математической задачи. Степень приближения определяемых с помощью численного ода искомых параметров модели зависит как от погрешностей самого метода, связанных с заменой исходной модели ее дискретным аналогом, так и от ошибок округления, возникающих при выполнении любых расчетов на ЭВМ в связи с конечной точностью представления чисел в ее памяти. Основным требованием к вычислительному алгоритму является необходимость получения решения Исходной задачи с заданной точностью за конечное число шагов.

К настоящему времени круг вопросов, связанных с разработкой и использованием численных методов, а также с построением на их основе вычислительных алгоритмов, выделился в самостоятельный быстро развивающийся и обширный раздел - вычислительную математику.

Если при численном подходе дискретизации подвергалась полученная система математических соотношений, то при имитационном подходе на отдельные элементы разбивается сам объект исследования [66]. В этом случае система математических соотношений для объекта-системы в целом не записывается, а заменяется «которым алгоритмом, моделирующим ее поведение и учитывающим взаимодействие друг с другом моделей отдельных элементов системы. Модели отдельных элементов могут быть как аналитическими, так и алгоритмическими.

Алгоритмические модели, использующие как численный, так имитационный подход, не позволяют получить решения задач в аналитической форме, что затрудняет и усложняет процесс анализа результатов моделирования. Так как применение моделей данного типа возможно лишь при наличии вычислительной техники, то их эффективность зависит от мощности и быстродействия ЭВМ. Несомненным достоинством алгоритмических моделей является отсутствие принципиальных ограничений на сложность модели, что позволяет применять их для исследования систем произвольной сложности.

Использование математической модели, построенной алгоритмическими методами, аналогично проведению экспериментов с ре