
- •140010, Г. Люберцы, Московской обл., Октябрьский пр-т, 403.
- •Глава 1. Архитектура реального режима
- •1.1. Память и процессор
- •Глава 1
- •Глава 1
- •1.2. Распределение адресного пространства
- •Глава 1
- •1.3. Регистры процессора
- •Глава 1
- •Глава 1
- •9 7H Шестнадцатернчное обозначение числа
- •Глава 1
- •1.4. Сегментная структура программ
- •Глава 1
- •Глава 1
- •Глава 1
- •1.5. Стек
- •Глава 1
- •1.6. Система прерываний
- •Глава 1
- •Глава I
- •1.7. Система ввода-вывода
- •Глава I
- •Глава 1
- •Глава 2. Основы программирования
- •2.1. Подготовка и отладка программы
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •2.2. Представление данных
- •Глава 2
- •Глава 2
- •2.3. Описание данных
- •Глава 2
- •Глава 2
- •2.4. Структуры и записи
- •Глава 2
- •Глава 2
- •2.5. Способы адресации
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •2.7. Вызовы подпрограмм
- •Глава 2
- •2.8. Макросредства ассемблера
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 3. Команды и алгоритмы
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •3.2. Циклы и условные переходы
- •Глава 3
- •Глава 3
- •3.3. Обработка строк
- •Глава 3
- •3.4. Использование подпрограмм
- •Глава 3
- •Глава 3
- •3.5. Двоично-десятичные числа
- •Глава 3
- •Глава 3
- •3.6. Программирование аппаратных средств
- •Глава 3
- •37Ah Порт управлсш!я
- •Глава 3
- •Глава 3
- •Глава 4. Расширенные возможности
- •4.1. Архитектурные особенности
- •Глава 4
- •4.2. Дополнительные режимы адресации
- •Глава 4
- •4.3. Использование средств 32-разрядных процессоров в программировании
- •Глава 4
- •Глава 4
- •Глава 4
- •4.4. Основы защищенного режима
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Idiv Деление целых чисел со знаком
- •Imul Умножение целых чисел со знаком
- •In Ввод из порта
- •Inc Инкремент (увеличение на 1)
- •Int Программное прерывание
- •Into Прерывание по переполнению
- •Iret Возврат из прерывания
- •1 Lods Загрузка операнда из строки : lodsb Загрузка байта из строки lodsw Загрузка слова из строки
- •Операнд
- •Xadd память, регистр
- •Xchg Обмен данными между операндами
- •Xlat Табличная трансляция
- •Xor Логическое исключающее или
- •Содержание
Глава 4
4 Кбайт
4 Кбайт
4 Кбайт
4 Кбайт
4 Кбайт
4 Кбайт
4 Кбайт
Линейное адресное пространство
Физическое адресное пространство
Рис. 4.6. Отображение логических адресов на физические.
31
Страничный кадр
Каталог
страниц 1024
4х-байтовых полей
Линейный
адрес
2221 12 Ц
Физический адрес
12 11
Смещение
Таблица страниц
CR3
Каждая таблица содержит 1024 4х-байтовых полей
Базовый адрес каталога
Рис. 4.7. Страничная трансляция адресов.
расширенные возможности современных микропроцессоров 181
Не все 1024 таблицы страниц должны обязательно иметься в наличии (кстати, они заняли бы в памяти довольно много места — 4 Мбайт). Если программа реально использует лишь часть возможного линейного адресного пространства, а так всегда и бывает, то неиспользуемые поля в каталоге страниц помечаются, как отсутствующие. Для таких полей система, экономя память, не выделяет страничные таблицы.
При включенной страничной трансляции линейный адрес рассматривается, как совокупность трех полей: 10-битового индекса в каталоге страниц, 10-битового индекса в выбранной таблице страниц и 12-битового смещения в выбранной странице. Напомним, что линейный адрес образуется путем сложения базового адреса сегмента, взятого из дескриптора сегмента, и смещения в этом сегменте, предоставленного программой.
Старшие 10 бит линейного адреса образуют номер поля в каталоге страниц. Базовый адрес каталога хранится в одном из управляющих регистров процессора, конкретно, в регистре CR3. Из-за того, что каталог сам представляет собой страницу и выровнен в памяти на границу 4 Кбайт, в регистре CR3 для адресации к каталогу используются лишь старшие 20 бит, а младшие 12 бит зарезервированы для будущих применений.
Поля каталога имеют размер 4 байт, поэтому индекс, извлеченный из линейного адреса, сдвигается влево на 2 бит (т.е. умножается на 4) и полученная величина складывается с базовым адресом каталога, образуя адрес конкретного поля каталога. Каждое поле каталога содержит физический базовый адрес одной из таблиц страниц, причем, поскольку таблицы страниц сами представляют собой страницы и выровнены в памяти на границу 4 Кбайт, в этом адресе значащими являются только старшие 20 бит.
Далее из линейного адреса извлекается средняя часть (биты 12...21), сдвигается влево на 2 бит и складывается с базовым адресом, хранящимся в выбранном поле каталога. В результате образуется физический адрес страницы в памяти, в котором опять же используются только старшие 20 бит. Этот адрес, рассматриваемый, как старшие 20 бит физического адреса адресуемой ячейки, носит название страничного кадра. Страничный кадр дополняется с правой стороны младшими 12 битами линейного адреса, которые проходят через страничный механизм без изменения и играют роль смещения внутри выбранной физической страницы.
Рассмотрим абстрактный пример, позволяющий проследить цепочку преобразования виртуального адреса в физический. Пусть программа выполняет команду
mov EAX,DS:[EBX]
при этом содержимое DS (селектор) составляет 1167h, а содержимое ЕВХ (смещение) 31678h.
Старшие 13 бит селектора (число 116U) образуют индекс дескриптора в системной дескрипторной таблице. Каждый дескриптор включает в себя довольно большой объем информации о конкретном сегменте и, в частности, его линейный адрес. Пусть в ячейке дескрипторной таблицы с номером 116h записан линейный адрес (базовый адрес сегмента) 01051000h.
182
Глава -t
Тогда полный линейный адрес адресуемой ячейки определится, как сумма базового адреса и смещения:
Базовый адрес сегмента 01051000h Смещение 00031678h
Полный линейный адрес 01082678h
При выключенной табличной трансляции величина 01082678U будет представлять собой абсолютный физический адрес ячейки, содержимое которой должно быть прочитано приведенной выше командой mov. Легко сообразить, что эта ячейка находится в самом начале 17-го мегабайта оперативной памяти.
Посмотрим, как будет образовываться физический адрес при использовании страничной трансляции адресов. Полученный линейный адрес надо разделить на три состаатяющис для выделения индексов и смещения (рис. 4.8)
31
22 21
1211
О
| 0000000100 I 0010000010 | 01100111 1000 I
Индекс каталога Индекс таблицы Смещение
страниц Рис, 4.8. Пример линейного адреса.
Индекс каталога составляет 4h. Умножение его на 4 даст смещение от начала каталога. Это смещение равно 10h.
Индекс таблицы страниц оказался равным 82h. После умножения на 4 получаем смещение в таблице страниц, равное в данном случае 210h.
Предположим, что регистр CR3 содержит число 80001г. Тогда физический адрес ячейки в каталоге, откуда надо получить адрес закрепленной за данным участком программы таблицы страниц, составит SOOOh + 10h = 8010h. Пусть по этому адресу записано число 460211г. Его 12 младших битов составляют служебную информацию (в частности, бит 1 свидетельствует о присутствии этой таблицы страниц в памяти, а бит 5 говорит о том, что к этой таблице уже были обращения), а старшие биты, т.е. число 46000h образуют физический базовый адрес таблицы страниц. Для получения адреса требуемой ячейки этой таблицы к базовому адресу надо прибавить смещение 210U. Результирующий адрес составит 462101г.
Будем считать, что по адресу 46210h записано число 01FF5021h. Отбросив служебные биты, получим адрес физической страницы в памяти 01FF5000U. Этот адрес всегда оканчивается тремя нулями, так как страницы выровнены в памяти на границу' 4 Кбайт. Для получения физического адреса адресуемой ячейки следует заполнить 12 младших бит полученного адреса битами смещения из линейного адреса нашей ячейки, в которых в нашем примере записано число 678U. В итоге получаем физический адрес памяти 01FF5678h, расположенный в конце 32-го Мбайта.
Как видно из этого примера, и со страничной трансляцией, и без нее вычисление физических адресов адресуемых ячеек выполняется в защищенном режиме совсем не так, как в реальном. Неприятным практичес-
расширенные возможности современных микропроцессоров
183
ким следствием правил адресации защищенного режима является уже упоминавшаяся «оторванность» прикладной программы от физической памяти. Программист, отлаживающий программу защищенного режима (например, приложение Windows), может легко заглянуть в сегментные регистры и определить селекторы, выделенные программе. Однако селекторы абсолютно ничего не говорят о физических адресах, используемых программой. Физические адреса находятся в таблицах дескрипторов, а эти таблицы недоступны прикладной программе. Таким образом, программист не знает, где в памяти находится его программа или используемые ею области данных.
С другой стороны, использование в процессе преобразования адресов защищенных системой таблиц имеет свои преимущества. Обычно многозадачная операционная система создает для каждой выполняемой задачи свой набор таблиц преобразования адресов. Это позволяет каждой из задач использовать весь диапазон виртуальных адресов, при этом, хотя для разных задач виртуальные адреса могут совпадать (и, как правило, по крайней мере частично совпадают), однако сегментное и страничное преобразования обеспечивают выделение для каждой задачи несовпадающих областей физической памяти, надежно изолируя виртуальные адресные пространства задач друг от друга.
Вернемся теперь к таблицам дескрипторов и рассмотрим их более де-тально. Существует два типа дескрипторных таблиц: таблица глобальных дескрипторов (GDT от Global Descriptor Table) и таблицы локальных дескрипторов (LDT от Local Descriptor Table).Обычно для каждой из этих таблиц в памяти создаются отдельные сегменты, хотя в принципе это не обязательно. Таблица глобальных дескрипторов существует в единственном экземпляре и обычно принадлежит операционной системе, а локальных таблиц может быть много (это типично для многозадачного режима, в котором каждой задаче назначается своя локальная таблица).
Виртуальное адресное пространство делится на две равные половины. К одной половине обращение происходит через GDT, к другой половине через LDT. Как уже отмечалось, все виртуальное пространство состоит из 214 сегментов, из которых 213 сегментов адресуются через GDT, и еще 213 - чрез LDT.
Когда многозадачная система переключает задачи, глобальная таблица остается неизменной, а текущая локальная таблица заменяется на локальную таблицу новой задачи. Таким образом, половина виртуачьного пространства в принципе доступна всем задачам в система, а половина переключается от одной задачи к другой по мере переключения самих задач.
Для программирования защищенного режима и даже для отладки прикладных программ, работающих в защищенном режиме, полезно представлять себе структуру дескриптора и смысл его отдельных полей. Следует заметить, что существует несколько типов дескрипторов, которым присущи разные форматы. Так, дескриптор сегмента памяти (наиболее распространенный тип дескриптора) отличается от дескриптора шлюза, используемого, в частности, для обслуживания прерываний. Рассмотрим формат дескриптора памяти (рис. 4.9).
184
Глава -f
Байты |
|||||||||
|
7 |
|
.6 5 |
4 |
3210 |
||||
База 31. ..24 |
•\триб\ты 2' |
Атрибуты Г |
База сегмента 23...0 rP™mja сегмента i i i |
||||||
Биты 765 |
/< 43210 |
765 |
Ч Биты 43210 |
|
|||||
G |
D |
0 |
А V L |
1 1 1 Граница 19...16 i i i |
i Р DPL |
1 |
Тип i i |
А |
Рис. 4.9. Формат дескриптора памяти.
Как видно из рисунка, дескриптор занимает 8 байт. В байтах 2..,4 и 7 записывается линейный базовый адрес сегмента. Полная длина базового адреса — 32 бит. В байтах 0-1 записываются младшие 16 бит границы сегмента, а в младшие четыре бита байта атрибутов 2 — оставшиеся биты 16...19. Границей сегмента называется номер его последнего байта. Мы видим, что граница описывается 20-ю битами, и ее численное значение не может превышать 1М. Однако, единицы, в которых задается граница, можно изменять, что осуществляется с помощью бита дробности G (бит 7 байта атрибутов 2). Если G=0, граница указывается в байтах; если 1 — в блоках по 4 Кбайт. Таким образом, размер сегмента можно задавать с точностью до байта, но тогда он не может быть больше 1 Мбайт; если же установить G=l, то сегмент может достигать 4 Гбайт, однако его размер будет кратен 4 Кбайт. База сегмента и в том, и в другом случае задастся с точностью до байта.
Рассмотрим теперь атрибуты сегмента, которые занимают два байта дескриптора.
Бит A (Accessed, было обращение) устанавливается процессором в тот момент, когда в какой-либо сегмс!ггаый регистр загружается селектор данного сегмента. Далее процессор этот бит не сбрасывает, однако его может сбросить программа (разумеется, если она имеет доступ к содержимому дескриптора, что обычно является прерогативой операционной системы). Анализируя биты обращения различных сегментов, программа может судить о том, было ли обращение к данному сегменту после того, как она сбросила бит А.
Тип сегмента занимает 3 бит (иногда бит А включают в поле типа, и тогда тип занимает 4 бит) и может иметь 8 значений. Тип определяет правила доступа к сегменту. Так, если сегмент имеет тип 1, для него разрешены чтение и запись, что характерно для сегментов данных. Назначив сегмент)' тип 0, мы разрешим только чтение этого сегмента, защитив его тем самым от любых модификаций. Тип 4 обозначает разрешение исполнения, что характерно для сегментов команд. Используются и другие типы сегментов.
Расширенные возможности современных микропроцессоров 185
Подчеркнем, что защита сегментов памяти от несанкционированных его типом действий выполняется не программой, и даже не операционной системой, а процессором на аппаратном уровне. Так, при попытке записи в сегмент типа 0 возникнет так называемое исключение общей защиты. Исключением называется внутреннее прерывание, возбуждаемое процессором при возникновении каких-либо неправильных с его точки зрения ситуаций. Попытка записи в сегмент, для которого запись запрещена, и относится к такого рода ситуациям. Исключению общей защиты соответствует вектор 13, в котором должен находиться адрес обработчика этого исключения.
Стоит еще обратить внимание на тип 4. Для сегмента команд разрешается только исполнение, но не запись и даже не чтение. Это значит, что в защищенном режиме программа не может случайно залезть в свой сегмент команд и затереть его; не может она также и сознательно модифицировать команды в процессе своего выполнения — методика, иногда используемая в программах реального режима для защиты от их расшифровки любознательными программистами.
Бит 4 байта атрибутов 1 является идентификатором сегмента. Если он равен 1, как это показано на рис. 4.9, дескриптор описывает сегмент памяти. Значение этого бита 0 характеризует дескриптор системного сегмента.
Поле DPL (Descriptor Privilege Level, уровень привилегий дескриптора) служит для защиты программ друг от друга. Уровень привилегий может принимать значения от 0 (максимальные привилегии) до 3 (мини-матьные). Программам операционной системы обычно назначается уровень 0, прикладным программам — уровень 3, в результате чего исключается возможность некорректным программам разрушить операционную систему. С другой стороны, если прикладная программа сама выполняет функции операционной системы, переводя процессор в защищенный режим и работая далее в этом режиме, ее сегментам следует назначить наивысший (нулевой) уровень привилегий, что откроет ей доступ ко всем средствам защищенного режима.
Бит Р говорит о присутствии сегмента в памяти. В основном он ис-
|j пользуется для организации виртуальной памяти. С помощью этого бита
система может определить, находится ли требуемый сегмент в памяти, и
при необходимости загрузить его с диска. В процессе выгрузки ненужного
пока сегмента на диск бит Р в его дескрипторе сбрасывается.
Младшая половина байта атрибутов 2 занята старшими битами границы сегмента. Бит AVL (от Available, доступный) не используется и не анализируется процессором и предназначен для использования прикладными программами.
Бит D (Default, умолчание) определяет действующий по умолчанию
размер для операндов и адресов. Он изменяет характеристики сегментов
двух типов: исполняемых и стека. Если бит D сегмента команд равен 0, в
^сегменте по умолчанию используются 16-битовые адреса и операнды, если
1 — 32-битовые.
186