
- •140010, Г. Люберцы, Московской обл., Октябрьский пр-т, 403.
- •Глава 1. Архитектура реального режима
- •1.1. Память и процессор
- •Глава 1
- •Глава 1
- •1.2. Распределение адресного пространства
- •Глава 1
- •1.3. Регистры процессора
- •Глава 1
- •Глава 1
- •9 7H Шестнадцатернчное обозначение числа
- •Глава 1
- •1.4. Сегментная структура программ
- •Глава 1
- •Глава 1
- •Глава 1
- •1.5. Стек
- •Глава 1
- •1.6. Система прерываний
- •Глава 1
- •Глава I
- •1.7. Система ввода-вывода
- •Глава I
- •Глава 1
- •Глава 2. Основы программирования
- •2.1. Подготовка и отладка программы
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •2.2. Представление данных
- •Глава 2
- •Глава 2
- •2.3. Описание данных
- •Глава 2
- •Глава 2
- •2.4. Структуры и записи
- •Глава 2
- •Глава 2
- •2.5. Способы адресации
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •2.7. Вызовы подпрограмм
- •Глава 2
- •2.8. Макросредства ассемблера
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 3. Команды и алгоритмы
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •3.2. Циклы и условные переходы
- •Глава 3
- •Глава 3
- •3.3. Обработка строк
- •Глава 3
- •3.4. Использование подпрограмм
- •Глава 3
- •Глава 3
- •3.5. Двоично-десятичные числа
- •Глава 3
- •Глава 3
- •3.6. Программирование аппаратных средств
- •Глава 3
- •37Ah Порт управлсш!я
- •Глава 3
- •Глава 3
- •Глава 4. Расширенные возможности
- •4.1. Архитектурные особенности
- •Глава 4
- •4.2. Дополнительные режимы адресации
- •Глава 4
- •4.3. Использование средств 32-разрядных процессоров в программировании
- •Глава 4
- •Глава 4
- •Глава 4
- •4.4. Основы защищенного режима
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Idiv Деление целых чисел со знаком
- •Imul Умножение целых чисел со знаком
- •In Ввод из порта
- •Inc Инкремент (увеличение на 1)
- •Int Программное прерывание
- •Into Прерывание по переполнению
- •Iret Возврат из прерывания
- •1 Lods Загрузка операнда из строки : lodsb Загрузка байта из строки lodsw Загрузка слова из строки
- •Операнд
- •Xadd память, регистр
- •Xchg Обмен данными между операндами
- •Xlat Табличная трансляция
- •Xor Логическое исключающее или
- •Содержание
Глава 2
Основы^рограттрования
79
бут исходного текста программы, а программы операционной системы транслировались не нами и присутствуют в компьютере только в виде выполнимых модулей. А вот адреса каких-то характерных точек системных программ определить можно, хотя бы из векторов прерываний. Для обращения по абсолютным адресам надо воспользоваться командами косвенных переходов, которые, как и прямые, могут быть ближними и дальними. Косвенный ближний (внутрисегментный) переход. Б отличие от команд прямых переходов, команды косвенных переходов могут использовать различные способы адресации и, соответственно, иметь много разных вариантов. Общим для них является то, что адрес перехода не указывается явным образом в виде метки, а содержится либо в ячейке памяти, либо в одном из регистров, Это позволяет при необходимости модифицировать адрес перехода, а также осуществлять переход по известному абсолютному адресу. Рассмотрим случай, когда адрес перехода хранится в ячейке сегмента данных. Если переход ближний, то ячейка с адресом состоит из одного слова и содержит только смещение к точке перехода.
code segment
jmp DS:go_addr ;Код FF 26 dddd go: ;Точка перехода
code ends data segment
go_addr dw go ;Адрес перехода (слово) data ends
Точка перехода go может находиться в любом месте сегмента команд. В коде команды dddd обозначает относительный адрес слова go_addr в сегменте данных, содержащем эту ячейку.
В приведенном фрагменте адрес точки перехода в слове go_addr задан однозначно указанием имени метки go. Такой вариант косвенного перехода выполняет фактически те же функции, что и прямой (переход по единственному заданному заранее адресу), только несколько более запутанным образом. Достоинства косвенного перехода будут более наглядны, если представить, что ячейка go_addr поначалу пуста, а по ходу выполнения программы в нее, в зависимости от каких-либо условий, помещается адрес той или иной точки перехода:
mov mov mov
go_addr,gol go_addr,go2 go_addr,go3
Разумеется, приведенные выше команды должны выполняться не друг за другом, а альтернативно. В этом случае создается возможность перед выполнением перехода определить или даже вычислить адрес перехода, требуемый в данных условиях.
Ассемблер допускает различные формы описания косвенного перехода через ячейку сегмента данных:
jmp DS:go_addr jmp word ptr go_addr jmp go_addr
В первом варианте, использованном в приведенном выше фрагменте, указано, через какой сегментный регистр надлежит обращаться к ячейке go_addr, содержащей адрес перехода. Здесь допустима замена сегме'нта, если сегмент с ячейкой go_addr адресуется через другой сегментный регистр, например, ES или CS.
Во втором варианте подчеркивается, что переход осуществляется через ячейку размером в одно слово и, следовательно, является ближним. Ячейка go_addr могла быть объявлена с помощью директивы dd и содержать полный двухсловный адрес перехода, требуемый для реализации дальнего перехода. Однако сю можно воспользоваться и для ближнего перехода. Описатель word ptr перед именем ячейки с адресом перехода заставляет транслятор считать, что она имеет размер 1 слово (независимо от того, как она была объявлена), и что переход, следовательно, является ближним.
Наконец, возможен и самый простой, третий вариант, который совпадает по форме с прямым переходом, но, тем не менее, является косвенным, так как символическое обозначение go_addr является именем поля данных, а не программной меткой. В этом варианте предполагается, что сегмент, в котором находится ячейка go_addr, адресуется по умолчанию через регистр DS, хотя, как и во всех таких случаях, допустима замена сегмента. Тип перехода (ближний или дальний) определяется, исходя из размера ячейки go_addr. Однако этот вариант не всегда возможен. Для его правильной трансляции необходимо, чтобы транслятору к моменту обработки предложения
jmp go_addr
было уже известно, что собой представляет имя go_addr. Этого можно добиться двумя способами. Первый — расположить сегмент данных до сегмента команд, а не после, как в приведенном выше примере. Второй — заставить транслятор обрабатывать исходный текст программы не один раз, как он это делает по умолчанию, а несколько. Число проходов для транслятора TASM можно задать при его вызове с помощью ключа /т#, где # — требуемое число проходов. В нашем случае достаточно двух проходов.
В приведенных примерах адрес поля памяти с адресом точки перехода задавался непосредственно в коде команды косвенного перехода. Однако этот адрес можно задать и в одном из регистров общего назначения (ВХ, SI или DI). Для приведенного выше примера косвенного перехода в точку
so