Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РАЗДЕЛ 9 Функция нескольких переменных.doc
Скачиваний:
20
Добавлен:
17.09.2019
Размер:
1.93 Mб
Скачать
  1. Основные понятия скалярного поля

4.1. Скалярное поле

Предположим, что в каждой точке некоторой области задано значение скалярной физической величины , т.е. такой величины, которая полностью характеризуется своим числовым значением. Например, это может быть температура точек неравномерно нагретого тела, плотность распределения электрических зарядов в изолированном наэлектризованном теле, потенциал электрического поля и т.д. При этом называется скалярной функцией точки, записывается это так . Область , в которой определена функция , может совпадать со всем пространством, а может являться некоторой его частью.

Определение 4.1. Если в области задана скалярная функция точки , то говорят, что в этой области задано скалярное поле.

Будем считать, что скалярное поле стационарное, т.е. величина не зависит от времени .

Если физическая величина векторная, то ей будет соответствовать векторное поле, например, силовое поле, электрическое поле напряженности, магнитное поле и др.

Если скалярное поле отнесено к системе координат , то задание точки равносильно заданию ее координат , и тогда функция можно записать в обычном виде функции трех переменных: .

Рассмотрим точки области , в которых функция имеет постоянное значение , т.е. . Совокупность этих точек образует некоторую поверхность. Если возьмем другое значение , то получим другую поверхность. Эти поверхности называются поверхностями уровня.

Определение 4.2. Поверхностью уровня скалярного поля называется геометрическое место точек, в которых функция принимает постоянное значение, т.е.

.

В курсе физики при рассмотрении поля потенциала поверхности уровня называют обычно эквипотенциальными поверхностями (т.е. поверхности равного потенциала).

Если скалярное поле плоское, т.е. изучается распределение значений величины в какой-то плоской области, то функция зависит от двух переменных, например, и . Линиями уровня этого поля будут линии уровня функции , т.е. .

В прикладных науках часто употребляются линии уровня для представления изучаемой функции двух независимых переменных. Так, например, рассматривая высоту точки местности над уровнем моря как функцию двух переменных – координат точки, на карты наносят линии уровня этой функции. Они называются в топологии горизонталями. С помощью сети горизонталей удобно следить за изменением высоты местности. В метеорологии пользуются сетями изотерм и изобар (линий одинаковых средних температур и линий равных средних давлений), являющимися линиями уровня температуры и давления как функции координат точки местности.

Пример 4.1. Построить в плоскости линии уровня функции .

4.2. Производная по направлению

Важной характеристикой скалярного поля является скорость изменения поля в заданном направлении.

Пусть задано скалярное поле, т.е. задана функция , и точка . Будем предполагать, что функция непрерывна и имеет непрерывные производные по своим аргументам в области .

Проведем из точки вектор , направляющие косинусы которого . На векторе , на расстоянии от его начала, рассмотрим точку . Тогда .

.

Учитывая, что , то полученное равенство будет иметь следующий вид:

.

Перейдем к пределу при .

Определение 4.3. Предел отношения при называется производной от функции в точке по направлению вектора и обозначается , т.е.

.

Итак, если функция дифференцируемая, то производная от функции в точке по направлению вектора находится по следующей формуле:

, (4.1)

где  направляющие косинусы вектора .

В случае функции двух переменных , т.е. когда поле плоское, формула (4.1) примет следующий вид:

, (4.2)

где .

Подобно тому, как частные производные характеризуют скорость изменения функции в направлении осей координат, так и производная по направлению будет являться скоростью изменения функции в точке по направлению вектора .