Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Pokhil_Lektsiyi.doc
Скачиваний:
126
Добавлен:
17.09.2019
Размер:
45.22 Mб
Скачать

Тема 6. Кріпильні вузли віброагрегатів

6.1.Розрахункова схема віброактивного агрегату

Задачу будемо розглядати стосовно коливань механізму з незбалансованим ротором. Дослідження роботи кріпильних вузлів при циклічному навантаженні виконаємо на прикладі віброактивного роторного агрегату, розрахункова схема якого зображена на (рис. 2.29).

Механічна система, наприклад, електродвигун – відцентровий вентилятор, складається із корпусу 1 масою mS і ротора 2 масою mR , який швидко обертається. Корпус пружно закріплений на опорах А і В за допомогою кріпильних вузлів 3. В свою чергу кріпильний вузол 3 складається із деталей, що з’єднуються (лапи двигуна та основи) і різьбових деталей типу болт-гайка, пружна шайба.

Причиною виникнення коливань являється дисбаланс мас ротора і статора відносно осі обертання 0. Динамічні моменти інерції статора і ротора відносно центрів мас СS і СR позначимо IS і IR. Статор і ротор будемо розглядати як абсолютно тверді тіла. Податливістю вала і його опор нехтуємо.

6.2. Математична модель взаємодії віброактивного агрегату з основою

Механічна система (рис.2.29) має чотири ступені вільності. Розглянемо поступальні і обертальні рухи мас статора mS і ротора mR в вибраній системі узагальнених координат x , y , S і R .

Узагальнені координати – це незалежні параметри, які визначають положення механізму відносно нерухомих осей.

Диференційні рівняння руху механічної системи в узагальнених координатах складемо на основі рівняння Лагранжа другого роду. Число рівнянь Лагранжа дорівнює числу ступенів вільності механізму:

(2.51)

де Т- кінетична енергія ; , , ; , , і , , , - узагальнені сили, що відповідають потенціальній енергії, енергії розсіяння і зовнішніх сил.

Розрахункова схема віброактивного агрегату

Рис.2.29

Для зручності розв’язку системи диференційних рвнянь (2.51) подамо її в матричному вигляді (математичні перетворення в [28])

.

(2.52)

де М- матриця; V, F, C, X, N – стовпці матриці

Зв’язок узагальнених координат з узагальненими швидкостями визначається матричним рівнянням :

(2.53)

Для асинхронного двигуна , при його роботі на робочій частині механічної характеристики, момент рушійних сил визначається за відомою, із курсу електроприводу, залежністю :

,

(2.54)

де МК - критичний момент двигуна ;

- синхронна кутова швидкість ;

S K - критичне ковзання двигуна.

Позначимо :

.

З врахуванням прийнятих позначень рівняння (2.54) матиме вигляд :

.

(2.55)

Вирази (2.52), (2.53) та (5.55) являють собою повну систему нелінійних диференційних рівнянь першого порядку, записану безпосередньо в нормальній формі Коши. Розв’язуючи цю систему рівнянь, наприклад, методом Рунге – Кутта, можна визначити деформації і зусилля в кріпильних вузлах, а також віброшвидкості агрегату, що коливається.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]