
- •17 Базовые типы операндов: данные логического типа, строки, адреса
- •18 Базовые типы операндов: числа, разрядность основных форматов, размещение в памяти
- •19, 20 Данные символьного типа: общие сведения, принципы кодирования, стандарты ascii и iso 8859, кодовые страницы, юникод.
- •21. Архитектура на основе общей магистрали. Характеристики системной магистрали.
- •22. Алгоритм функционирования системной магистрали. Взаимодействие устройств.
- •23. Иерархия магистралей: двух- и трехшинная архитектура.
- •24. Шинный арбитраж: предпосылки введения, схемы приоритетов.
- •25. Шинный арбитраж: алгоритмы динамического изменения приоритетов.
- •26. Централизованный параллельный и многоуровневый арбитраж шины.
- •27. Централизованный последовательный арбитраж.
- •28. Децентрализованный арбитраж шин.
- •29. Опросные схемы арбитража шин.
- •30. Протокол шины: понятие, виды протоколов. Транзакции синхронной шины.
- •31. Асинхронные протоколы шины: транзакции, тайм-ауты.
- •32. Пакетный режим пересылки информации. Конвейеризация транзакций.
- •33. Расщепление транзакций. Увеличение полосы пропускания шины.
- •Локализация данных;
- •Управление и синхронизация
- •Обмен информацией
- •Буферизация данных
- •Обнаружение ошибок
- •36. Структурная организация модуля ввода-вывода.
- •37. Алгоритм обмена информацией между центральным процессором и внешним устройством.
- •38 Способы организации ввода-вывода. Программно управляемый ввод-вывод.
- •39. Команды, используемые при программно управляемом вводе-выводе.
- •40. Механизм ввода-вывода по прерываниям
- •41. Методы идентификации устройств, запрашивающих прерывание.
- •42. Векторные прерывания: принципы реализации, виды.
- •43 Приоритеты прерываний. Отличие последовательной обработки прерываний от обработки вложенных прерываний.
- •44. Контроллер прямого доступа к памяти: состав и назначение компонентов, инициализация.
- •45. Алгоритм обмена на основе пдп. Буферизация данных.
- •Варианты реализации механизма пдп. Достоинства и недостатки.
- •Понятия канала ввода-вывода и процессора ввода-вывода.
- •Канальная программа. Управляющее слово канала.
- •Алгоритм функционирования канала ввода-вывода. Способы организации взаимодействия ву с каналом.
- •Режимы канала ввода-вывода.
- •Методы доступа к данным в памяти компьютера.
- •Параметры оценки быстродействия памяти.
- •Иерархическая архитектура памяти компьютера: предпосылки внедрения, принципы реализации и функционирования.
- •Локальность по обращению: виды, использование в архитектурных решениях.
- •Иерархия памяти компьютера: характеристики, описание уровней.
- •Основная память компьютера: назначение, типы запоминающих устройств, способы организации.
- •57 Адресная организация памяти
- •58. Блочная организация памяти: назначение, виды, факторы эффективности применения
- •59. Расслоение памяти и чередование адресов: назначение, принцип реализации
- •60. Ассоциативная память: логическая организация, функционирование
- •63 Логическая и функциональная организация кэш-памяти прямого отображения.
- •64 Логическая и функциональная организация полностью ассоциативной кэш-памяти.
- •65 Логическая и функциональная организация множественно-ассоциативной кэш-памяти.
- •66 Алгоритмы замещения информационных блоков в кэш-памяти: назначение, виды, реализация.
- •67 Согласование содержимого кэш-памяти и оп. Стратегии записи в кэш-памяти.
- •68 Многоуровневая кэш-память. Принстонская и гарвардская архитектуры кэш-памяти.
- •69 Виртуализация памяти компьютеров: предпосылки внедрения, принцип реализации, виды виртуальной памяти.
- •70 Концепция страничной организации памяти. Взаимодействие виртуальной памяти с кэш-памятью.
- •71 Варианты реализации страничной таблицы. Tlb.
- •72 Ограничения страничной организации памяти. Сегментация памяти.
- •73 Проблемы динамического распределения памяти при сегментации. Сегментно-страничная организация памяти.
- •74 Метод колец защиты памяти.
- •75 Метод граничных регистров памяти.
- •76 Защита памяти по ключам.
- •Концепция raid: принципы построения массивов дисковой памяти, назначение, способы реализации.
- •78. Дисковые массивы raid уровней 0, 1, 10: назначение, принципы реализации, свойства.
- •79. Дисковые массивы raid уровней 5, 6: назначение, принципы реализации, свойства.
- •81. Прерывания: фаза прерывания, поток данных, классы прерываний.
- •82. Арифметический конвейер: назначение, принципы реализации. Понятие суперковейера.
- •83. Конвейерная обработка данных: предпосылки внедрения, принципы реализации, способы синхронизации ступеней.
- •1. Синхронный конвейер
- •2. Асинхронный конвейер
- •84. Синхронный конвейер: реализация 6-ступенчатого конвейера, метрики эффективности, оценка выигрыша от внедрения.
- •Ускорение
- •2. Эффективность
- •3 . Пропускная способность (производительность)
- •85. Виды рисков синхронного конвейера.
- •86. Методы снижения приостановок конвейера.
- •88. Risc-архитектура: средства оптимизации использования регистров.
- •89. Параллелизм уровня команд. Концепция vliw-архитектуры.
- •90. Суперскалярные компьютеры: принципы построения, структура процессора.
- •1) Преобразовать выражение в постфиксную форму;
- •2) Показать последовательность стековых операций при использовании полиз.
26. Централизованный параллельный и многоуровневый арбитраж шины.
Центральный арбитр (ЦА), обеспечивает предоставление доступа к шине только одному из запросивших ведущих. Может быть самостоятельным модулем или частью ЦП.
ЦА связан с каждым потенциальным ведущим индивидуальными двухпроводными трактами. Поскольку запросы к центральному арбитру могут поступать независимо и параллельно, данный вид арбитража называют централизованным арбитражем независимых запросов.
ЗШ – сигнал запроса шины
ПШ – сигнал предоставления шины
ШЗ – сигнал занятия шины
Алгоритм централизованного параллельного арбитража. Сигналы ЗШ поступают на вход центрального арбитра по индивидуальным линиям. Ведущему с номером i, который был выбран арбитром, также по индивидуальной линии возвращается сигнал ПШ. Занять шину новый ведущий сможет лишь после того, как текущий ведущий (с номером j) снимет сигнал ШЗ. Текущий ведущий должен сохранять сигналы ШЗ и ЗШj активными в течение всего времени, пока он использует шину.
Получив запрос от ведущего, приоритет которого выше, чем у текущего ведущего, арбитр снимает сигнал ПШj на входе текущего ведущего и выдает сигнал предоставления шины ПШ запросившему ведущему. Текущий ведущий, в ответ на снятие арбитром сигнала ПШj, снимает свои сигналы ШЗ и ЗШj. После этого запросивший ведущий может перенять управление шиной. Если в момент пропадания сигнала ПШ на шине происходит передача информации, текущий ведущий сначала завершает передачу и лишь после этого снимает свои сигналы.
Многоуровневый арбитраж. При наличии большого числа источников запроса ЦА может строиться по схеме двухуровневого параллельного арбитража. Все возможные запросы разбиваются на группы, и каждая группа анализируется своим арбитром первого уровня. Каждый арбитр первого уровня выбирает запрос, имеющий в данной группе наивысший приоритет. Арбитр второго уровня отдает предпочтение среди арбитров первого уровня, обнаруживших запросы на шину, тому, который имеет более высокий приоритет.
Если количество возможных запросов очень велико, могут вводиться дополнительные уровни арбитража.
Свойства централизованного параллельного арбитража:
(+) высокая гибкость – вместо статических приоритетов допускается использовать любые варианты динамической смены приоритетов;
(+) высокое быстродействие – благодаря наличию прямых связей между центральным арбитром и ведущими;
(-) непосредственные связи становятся причиной повышенной стоимости реализации;
(-) затруднено подключение дополнительных устройств. Обычно максимальное число ведущих при параллельном арбитраже не превышает восьми;
(-) сигналы запроса и подтверждения присутствуют только на индивидуальных линиях и не появляются на общих линиях шины, что затрудняет диагностику.
27. Централизованный последовательный арбитраж.
Центральный арбитр (ЦА), обеспечивает предоставление доступа к шине только одному из запросивших ведущих. Может быть самостоятельным модулем или частью ЦП.
Для выделения запроса с наивысшим приоритетом используется один из сигналов, поочередно проходящий через цепочку ведущих (цепочечный или гирляндный арбитраж). Предполагает статическое распределение приоритетов. Наивысший приоритет имеет ближайшее к арбитру ведущее устройство (устройство, на которое арбитр выдает сигнал ПШ). Далее приоритеты ведущих в цепочке последовательно понижаются.
В зависимости от того, какой из сигналов используется для целей арбитража, различают три основных типа схем:
с цепочкой для сигнала ПШ;
с цепочкой для сигнала ЗШ;
с цепочкой для дополнительного сигнала разрешения (РШ).
Алгоритм централизованного последовательного арбитража. Получив сигнал ЗШ, арбитр анализирует состояние линии занятия шины, и если шина свободна, формирует сигнал ПШ. Сигнал ПШ последовательно переходит по цепочке от одного ведущего к другому. Если устройство, на которое поступил сигнал ПШ, не запрашивало шину, оно пропускает сигнал дальше по цепочке. Когда ПШ достигнет самого левого из запросивших ведущих, последний блокирует дальнейшее распространение сигнала ПШ по цепочке и берет на себя управление шиной.
Свойства централизованного последовательного арбитража:
(+) простота реализации;
(+) малое количество используемых линий;
(+) легкое наращивание числа устройств, подключаемых к шине;
(-) последовательное прохождение сигнала по цепочке замедляет арбитраж, причем время арбитража растет пропорционально длине цепочки;
(-) статическое распределение приоритетов может привести к полному блокированию устройств с низким уровнем приоритета;
(-) не очень удобен в плане диагностики работы шины.