Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Office Word (3)ь.docx
Скачиваний:
3
Добавлен:
17.09.2019
Размер:
32.67 Кб
Скачать

2.3 Технології виготовлення

Основним елементом аналогових мікросхем є транзистори (біполярні або польові). Різниця в технології виготовлення транзисторів істотно впливає на характеристики мікросхем. Тому нерідко в описі мікросхеми вказують технологію виготовлення, щоб підкреслити тим самим загальну характеристику властивостей і можливостей мікросхеми. У сучасних технологіях об'єднують технології біполярних і польових транзисторів, щоб добитися поліпшення характеристик мікросхем.

Мікросхеми на уніполярних (польових) транзисторах — найекономічніші (по споживанню струму) :

МОH-логіка (метал-оксид-напівпровідник логіка) — мікросхеми формуються з польових транзисторів n -МОH або p -МОH типу;

КМОН-логіка (комплемент МОН-логика) — кожен логічний елемент мікросхеми складається з пари взаємодоповнюючих (комплементу) польових транзисторів (n -МОН і p -МОН).

Мікросхеми на біполярних транзисторах:

РТЛ — транзисторна для резистора логіка (застарілазамінена на ТТЛ);

ДТЛ — діодно-транзисторна логіка (застаріла, замінена на ТТЛ);

ТТЛ — транзисторно-транзисторна логіка — мікросхеми зроблені з біполярних транзисторів з багатоемітерними транзисторами на вході;

ТТЛШ — транзисторно-транзисторна логіка з діодами Шотки — вдосконалена ТТЛ, в якій використовуються біполярні транзистори з ефектом Шотки;

ЕЗЛ — емітерно-пов'язана логіка — на біполярних транзисторах, режим роботи яких підібраний так, щоб вони не входили в режим насичення, — що істотно підвищує швидкодію;

ІІЛ — інтегрально-інжекційна логіка.

КМОН і ТТЛ (ТТЛШ) технології є найбільш поширеними логіками мікросхем. Де необхідно економити споживання струму, застосовують КМОП-технологію, де важливіше швидкість і не потрібно економію споживаної потужності застосовують ТТЛ-технологію. Слабким місцем КМОП-микросхем є уразливість від статичної електрики — досить торкнутися рукоювиведення мікросхеми і її цілісність вже не гарантується. З розвитком технологій ТТЛ і КМОН мікросхеми за параметрами зближуються і, як наслідок, наприклад, серія мікросхем 1564 — зроблена за технологією КМОП, а функціональність і розміщення в корпусі як у ТТЛ технології.

Мікросхеми, виготовлені за ЕЗЛ-технологією є найшвидшими, але і найбільш енергоспоживаючими, і застосовувалися при виробництві обчислювальної техніки в тих випадках, коли найважливішим параметром була швидкість обчислення. У СРСР найпродуктивніші ЕОМ типу ЕС106х виготовлялися на ЭСЛ-микросхемах. Зараз ця технологія використовується рідко.

При виготовленні мікросхем використовується метод фотолітографії (проекційною, контактною та ін.), при цьому схему формують на підкладці (зазвичай з кремнію), отриманій шляхом різання алмазними дисками монокристалів кремнію на тонкі пластини. Зважаючи на крихту лінійних розмірів елементів мікросхем, від використання видимого світла, і навіть ближнього ультрафіолету, при засвіченні давно відмовилися.

В якості характеристики технологічного процесу виробництва мікросхем вказують мінімальні контрольовані розміри топології фотоповторювача (контактні вікна в оксиді кремнію, ширина затворів в транзисторах і т. д.) і, як наслідок, розміри транзисторів (і інших елементів) на кристалі. Цей параметр, проте, знаходиться у взаємозалежності з рядом інших виробничих можливостей : чистотою отримуваного кремнію, характеристиками інжекторів, методами фотолітографії, методами витравлення і напилення.

В 1970-х роках мінімальний контрольований розмір складав 2-8 мкм, в 1980-х був зменшений до0,5-2 мкм. Деякі експериментальні зразки устаткування фотолітографії рентгенівського діапазону забезпечували мінімальний розмір 0,18 мкм.

В 1990-х роках, із-за нового витка «війни платформ», експериментальні методи стали впроваджуватися у виробництво і швидко удосконалюватися. На початку 1990-х процесори (наприклад, ранні Pentium і Pentium Pro) виготовляли за технологією 0,5-0,6 мкм (500—600 нм). Потім їх рівень піднявся до 250—350 нм. Наступні процесори (Pentium 2, K6 — 2, Athlon) вже робили за технологією 180 нм.

У кінці 1990-х фірма Texas Instruments створила нову ультрафіолетову технологію з мінімальним контрольованим розміром близько 80 нм. Але досягти її в масовому виробництві не вдавалося аж до недавнього часу. За станом на 2009 рік технології вдалося забезпечити рівень виробництва аж до 90 нм.

Нові процесори (спершу це був Core 2 Duo) роблять по новій УФ-технологии 45 нм. Є і інші мікросхеми, що давно досягли і перевищили цей рівень (вчастковості, відеопроцесори і флеш-память фірми Samsung — 40 нм). Проте подальший розвиток технології викликає все більше труднощів. Обіцянки фірми Intel по переходу на рівень 30 нм вже до 2006 року так і не збулися.

За станом на 2009 рік альянс провідних розробників і виробників мікросхем працює над тих. процесом 32 нм.

В 2010-му в роздрібному продажі вже з'явилися процесори, розроблені по 32-х нм тих. процесу.

Очікується, що, наступним, напевно, буде тих. процес 22 нм.