- •Глава 1. Номенклатура и изомерия органических соединений.
- •Теория строения органических соединений а.М. Бутлерова.
- •Свойства вещества определяются не только их качественным и количественным составом, но и порядком соединения атомов в молекуле, т.Е. Химическим строением вещества.
- •Свойства органических соединений зависят не только от состава вещества и порядка соединения атомов в его молекуле, но и от взаимного влияния атомов и групп атомов друг на друга.
- •Основы строения и реакционной способности органических соединений Общая характеристика и классификация органических соединений
- •1.2.1. Заместительная номенклатура
- •Некоторые характеристические группы, обозначаемые только префиксами
- •Порядок старшинства характеристических групп, обозначаемых префиксами и суффиксами
- •Номенклатуре
- •Радикально-функциональная номенклатура
- •Глава 2. Электронное строение органических молекул.
- •Понятие о взаимном влиянии атомов в молекуле и электронные эффекты
- •Системы с замкнутой цепью сопряжения.
- •Кислотно-основные свойства органических соединений. Типы кислот и оснований.
- •Льюисовская кислотность и основность органических соединений.
- •Концепция жестких и мягких кислот и оснований (принцип жмко)
- •Глава 3. Механизмы реакций органических соединений.
- •Классификация органических реакций и их компонентов.
- •Реакции электрофильного присоединения, электрофильного замещения.
- •Реакции нуклеофильного замещения, нуклеофильного присоединения (присоединения-отщепления).
- •Глава 4. Оксосоединения (альдегиды и кетоны).
- •Общая характеристика реакционной способности
- •Альдегиды и кетоны
- •Альдегиды и их производные
- •Лабораторный практикум
- •Ход работы.
- •Глава 5. Карбоновые кислоты. Вопросы к занятию.
- •Строение, номенклатура и физико-химические свойства карбоновых кислот
- •Химические свойства предельных кислот и их производных
- •Декарбоксилирование
- •Кислотно-основные свойства
- •Карбоновые кислоты как ацилирующие реагенты
- •Производные карбоновых кислот, их свойства и взаимные превращения.
- •Функциональные производные карбоновых кислоты
- •Сложные эфиры, имеющие приятный аромат
- •Дикарбоновые кислоты
- •Некоторые дикарбоновые кислоты, их названия и кислотные свойства
- •Ненасыщенные карбоновые кислоты
- •Содержание высших ненасыщенных кислот в растительных маслах, % по массе
- •Лабораторный практикум.
- •Инструкция по технике безопасности.
- •Ход работы.
- •Глава 6. Гетерофункциональные соединения.
- •Поли- и гетерофункциональные соединения, участвующие в процессах жизнедеятельности.
- •Классификация
- •Общая характеристика реакционной способности.
- •Специфические реакции.
- •Аминоспирты.
- •Гидроксикарбоновые кислоты
- •Оксокарбоновые кислоты
- •Отдельные представители фенолокислот
- •Лабораторный практикум.
- •Ход работы.
- •Глава 7. Биологически-активные гетероциклические соединения.
- •Азотосодержащие ароматические гетероциклические соединения
- •Лабораторный практикум.
- •Ход работы.
- •Глава 8. Амиокислоты, пептиды, белки.
- •Строение и свойства аминокислот и пептидов
- •Физиологическая роль и применение в медицине некоторых аминокислот
- •Контрольные вопросы
- •1. Каталитическая функция
- •7. Защитная функция
- •Лабораторный практикум.
- •Ход работы:
- •Глава 9. Углеводы.
- •Строение и свойства углеводов
- •Гетерополисахариды
- •Функции углеводов и их обмен
- •Контрольные вопросы
- •Глава 10. Нуклеиновые кислоты, их структура и свойства. Вопросы к занятию:
- •Нуклеотидный состав и структура днк и рнк.
- •Биологические функции нуклеиновых кислот.
- •Контрольные вопросы
- •Глава 11. Омыляемые и неомыляемые липиды. Стероиды и стероидные гормоны.
- •Липиды. Строение и классификация липидов
- •Простые липиды
- •Константы некоторых жиров животного и растительного происхождения
- •Температура плавления (застывания) некоторых жиров
- •Терпены
- •Стериды. Стероиды и стероидные гормоны.
- •Стероидные гормоны
- •Сложные липиды
- •Лабораторная работа
- •II. Некоторые свойства скипидара.
- •III. Качественные реакции на холестерин и жёлчные кислоты.
- •IV. Качественная реакция на витамин d2 (кальциферол).
- •Глава 12. Адсорбция на подвижной границе раздела фаз.
- •12.1. Поверхностная энергия и поверхностное натяжение.
- •Поверхностное натяжение жидкостей на границе с воздухом (298 к)
- •2. Изотерма Ленгмюра:
- •§7.Лабораторный практикум
- •Ход работы.
- •Глава 13. Адсорбция на неподвижной границе раздела фаз. Изотерма адсорбции уксусной кислоты на угле.
- •Адсорбционные равновесия и процессы на подвижной и неподвижной границах раздела фаз. Влияние различных факторов на величину адсорбции.
- •Контрольные вопросы
- •§7. Лабораторный практикум.
- •Ход работы.
- •Глава 14. Физикохимия дисперсных систем
- •По размерам частиц дисперсной фазы
- •По агрегатному состоянию дисперсной фазы и дисперсионной среды:
- •По характеру взаимодействия дисперсной фазы с дисперсионной средой:
- •Получение и устойчивость дисперсных систем
- •Лабораторный практикум.
- •Ход работы.
- •Литература основная литература
- •Дополнительная литература
Глава 8. Амиокислоты, пептиды, белки.
Вопросы к занятию.
Строение и свойства аминогруппы (основность, нуклеофильность, химическое поведение). Аминокислоты: строение, изомерия и классификация.
Биоплярная структура аминокислот и образование хелатов.
Химические свойства аминокислот: кислотно-основные свойства, декарбоксилирование, переминирование, реакции по карбоксильной аминогруппе, хелатообразование.
Строение пептпдной связи. Лактат-лактильная таутометрия.
Ди- и полипептиды: методы синтеза (твёрдофазный синтез).
Белки и их строение и биологическая роль.
Качественные реакции на аминокислоты, пептиды, белки.
Строение и свойства аминокислот и пептидов
Аминокислоты — соединения, в молекулах которых одновременно присутствуют амино- и карбоксильные группы. Природные α-аминокислоты
являются биологически активными соединениями; их классификация приведена
в табл. 16.
Таблица 16
Классификация природных α-аминокислот
Радикал R |
Название |
Обозначение |
Нейтральные гидрофобные кислоты |
||
|
Аланин |
Ala |
|
Валин |
Val |
|
Лейцин |
Leu |
|
Изолейцин |
Ilе |
|
Фенилаланин |
Phe |
|
Метионин |
Met |
|
Триптофан |
|
Нейтральные гидрофильные аминокислоты |
||
|
Глицин |
Gly |
|
Серин |
Ser |
|
Треонин |
Thr |
|
Тирозин |
Туr |
|
Аспарагин |
Asn |
|
Глутамин |
Gln |
|
Цистеин |
Сys |
Кислые аминокислоты (ионогенные) |
||
|
Аспарагиновая кислота |
Asp |
|
Глутаминовая кислота |
Glu |
Основные аминокислоты (ионогенные) |
||
|
Лизин |
Lys |
|
Аргинин |
Arg |
|
Гистидин |
His |
Строение аминокислот. Все α-аминокислоты* можно рассматривать как результат замены атома водорода в простейшей а-аминокислоте — глицине — на тот или иной радикал R. Таким образом, в соответствии с природой радикала R, называемого боковой цепью, -аминокислоты подразделяют на 4 группы, отличающиеся гидрофильностью или гидрофобностью боковых цепей, а также способностью боковой цепи проявлять кислотные или основные свойства (см. табл. 16).
Стереохимия природных α-аминокислот характеризуется тем, что все они кроме глицина имеют асимметрический атом углерода (атом, связанный и с амино-, и с карбоксильной группой), конфигурация которого может быть отождествлена с конфигурацией L-глицеринового альдегида путем цепи химических превращений:
* За исключением нейтральной гидрофобной аминокислоты пролина (L-пирролидин-α-карбоновой кислоты).
При этом превращения либо не должны затрагивать хиральный центр, либо реакции должны протекать строго стереоспецифично. Следовательно, все природные
α-аминокислоты являются L-энантиомерами.
Конфигурация асимметрического центра аминокислот определяет биологические свойства как самих аминокислот, так и олиго- и полимерных соединений, мономерами которых служат остатки аминокислот (эти соединения называют пептидами).
Свойства аминокислот. Аминокислоты представляют собой бесцветные кристаллические вещества с довольно высокими температурами плавления (более 230 °С). Большинство кислот хорошо растворимы в воде и практически не растворимы в спирте и диэтиловом эфире, что указывает на солеобразный характер этих веществ. Специфическая растворимость аминокислот обусловлена наличием в молекуле одновременно аминогруппы (имеющей основный характер) и карбоксильной группы (характеризующейся кислотными свойствами), благодаря чему аминокислоты принадлежат к амфотерным электролитам (амфолитам). В водных растворах и твердом состоянии аминокислоты существуют только в виде внутренних солей — цвиттер-ионов.
Кислотно-основное равновесие для аминокислоты может быть описано следующим образом:
Если к раствору аминокислоты приложено электрическое поле, то в зависимости от показателя рН раствора ионы аминокислоты будут перемещаться по-разному: в кислой среде при рН < 7 аммонийные ионы аминокислот перемещаются к отрицательному полюсу (катоду), а в щелочной среде при рН > 7 карбоксилат-ионы — к положительному полюсу (аноду). Значение рН, при котором молекула аминокислоты электронейтральна, называют изоэлектрической точкой и обозначают рI. При значении рН, равном показателю рI, молекула аминокислоты в электрическом поле не перемещается. Изоэлектрическую точку определяют по соотношению
pI=0.5(pKa1+pKa2)
Реакции с участием только аминогруппы. Наличие в молекуле одновременно амино- и карбоксильной группы отражается и на поведении аминокислот в тех реакциях, в которых участвует только одна из двух функциональных групп. Аминогруппа, которая в аминах проявляет себя как нуклеофил, в биполярном ионе полностью лишена нуклеофильности из-за протонирования, поэтому ни реакция алкилирования по Гофману, ни ацилирование, свойственные аминам, не имеют места в случае аминокислот. Эти реакции могут происходить только при условии предварительного депротонирования аминогруппы, что достигается использованием реакционной среды с высоким значением рН, при которых цвиттер-ион полностью превращен в карбоксилат-анион.
Рассмотрим основные реакции с участием только аминогруппы аминокислот.
1. Алкилирование осуществляют, действуя на полученные соли аминокислот алкилгалогенидами в присутствии оснований (как органических, так и неорганических).
2. Ацилирование также требует предварительного превращения цвиттер-иона в карбоксилат-анион и успешно протекает при наличии в реакционной среде эквивалента основания (основание необходимо для связывания выделяющегося при ацилировании кислого продукта — галогеноводорода или карбоновой кислоты):
или
и далее
3. Образование оснований Шиффа (как типичная реакция аминов) свойственно и аминокислотам; наиболее часто используют реакции аминокислот с бензальдегидом:
На образовании оснований Шиффа основана реакция идентификации аминокислот, известная как «нингидриновая проба», широко применяемая для визуализации зон аминокислот (возникает интенсивное сине-фиолетовое окрашивание) при их хроматографическом и электрофоретическом разделении, а также для количественного определения содержания аминокислот в растворах:
4.
Дезаминирование аминокислот, как и
всякого первичного амина, протекает
при действии на аминокислоты азотистой
кислоты:
Эта реакция лежит в основе метода определения содержания азота и количества аминогрупп в аминокислотах (метод Ван-Слайка).
Биосинтез аминокислот. Все природные α-аминокислоты делят на незаменимые (валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин), которые поступают в организм только из внешней среды, и заменимые, синтез которых происходит в организме.
Биосинтез
α-аминокислот может происходить на
основе не аминокислот, например по
реакции восстановления
-кетокислот
под действием НАДН:
Реакция стереоспецифична вследствие стереоспецифичности НАДН.
В качестве исходных веществ при биосинтезе аминокислот могут выступать другие аминокислоты. Например, реакция трансаминирования (переаминирования) является основной при синтезе α-аминокислот в организме:
Катализаторами и участниками этого процесса являются ферменты (аминотрансферазы) и кофермент пиридоксальфосфат, который служит переносчиком аминогруппы.
Пептиды. Амино- и карбоксильные группы аминокислот могут реагировать друг с другом, даже если они находятся в одной молекуле. Еще более реальным является образование межмолекулярной амидной связи. Амиды, образовавшиеся в результате взаимодействия некоторого числа аминокислот, называют пептидами. В зависимости от числа аминокислотных остатков различают ди-, три-, тетра-, пентапептиды и т.д. При этом пептиды молекулярной массой не более 10 000 называют олигопептидами; молекулярной массой более 10 000 — полипептидами, или белками. Амидные связи в составе пептидов называют пептидными.
Пептидная группировка характеризуется рядом свойств.
1. Пептидная группировка имеет жесткую планарную структуру, т. е. все атомы, входящие в нее, располагаются в одной плоскости.
2. Атомы кислорода и водорода пептидной группировки природных пептидов и белков находятся в транс-положении по отношению к связи С—N, так как при транс-конфигурации заместителей боковые цепи оказываются наиболее удалены друг от друга, что важно для стабилизации структуры белковой молекулы.
3. Пептидная группа представляет собой трехцентровую ρ,π-сопряженную систему, которая образуется вследствие делокализации электронной плотности между атомами кислорода, углерода и азота. Длины связей С—О и С—N оказываются практически одинаковыми.
4. Пептидная связь устойчива при температуре 310 К в средах, близких к нейтральной (физиологические условия). В кислой и щелочной средах связь подвергается гидролизу. В условиях организма гидролиз происходит ферментативно.
5.
Дополнительные, как правило, нековалентные
связи между пептидной группой и боковыми
цепями обусловливают существование
различных конформаций белковой молекулы.
Например, внутримолекулярные водородные
связи
стабилизируют вторичную структуру
белка.
6. Пептидная группировка может существовать в двух резонансных формах (кетонной и енольной):
Эти свойства пептидной группировки определяют строение полипептидной цепи:
Полипептидная цепь состоит из регулярно повторяющихся участков, образующих остов молекулы, и вариабельных участков — боковых радикалов аминокислотных остатков. Началом полипептидной цепи считают конец, несущий свободную аминогруппу (N-конец), а заканчивается полипептидная цепь свободной карбоксильной группой (С-конец).
Как правило, при изображении формулы пептида N-конец располагают слева, а С-конец — справа:
Называют пептид, последовательно перечисляя, начиная с N-конца, названия аминокислот, входящих в пептид; при этом суффикс «ин» заменяют на суффикс «ил» для всех аминокислот, кроме С-концевой.
Для описания строения пептидов применяют не традиционные структурные формулы, а сокращенные обозначения, позволяющие сделать запись более компактной.
Понятие «строение пептида» (равно как и «структура белка») включает в себя следующие характеристики:
1) общее число аминокислотных остатков;
2) перечень аминокислот, входящих в состав пептида, и указание количества аминокислотных остатков каждого вида (этот параметр называют аминокислотным составом пептида или белка);
3) последовательность связывания аминокислот друг с другом (этот параметр называют аминокислотной последовательностью; он отражает так называемую первичную структуру пептида или белка); последовательность записывают слева направо от N-конца к С-концу.
Особенности растворения полимеров. Размеры макромолекул высокомолекулярных соединений (ВМС) соизмеримы с размерами коллоидных частиц, что обусловливает общность ряда свойств, характерных для коллоидных растворов и растворов ВМС.
К таким свойствам относят малую скорость диффузии растворенных частиц, неспособность их проникать через мембраны, эффект Фарадея—Тиндаля и др. Однако растворы ВМС являются истинными, поскольку удовлетворяют основным критериям истинных растворов: самопроизвольность образования, гомогенность, термодинамическая устойчивость, равновесность.
Равновесие в растворах ВМС устанавливается медленнее, чем в истинных растворах, и растворению, как правило, предшествует набухание. Набуханием называют самопроизвольный процесс односторонней диффузии низкомолекулярного растворителя в полимер, сопровождающийся увеличением объема и массы ВМС.
Различают неограниченное и ограниченное набухание. В первом случае полимер поглощает жидкость, а потом при той же температуре постепенно переходит в раствор. Пример неограниченного набухания — растворение желатина или крахмала в горячей воде. При ограниченном набухании процесс практически останавливается на стадии образования гетерогенной системы, состоящей из двух фаз: набухший полимер и низкомолекулярный растворитель. В этом случае равновесной системой является гель. Пример ограниченного набухания — набухание желатина или крахмала в холодной воде, набухание резины в бензоле. Тип набухания зависит от гибкости полимерной цепи: чем более гибкой является полимерная цепь, тем больше степень набухания и тем выше вероятность образования раствора.
Количественно способность полимера набухать в тех или иных растворителях характеризуют степенью набухания:
где V, V0 — объем образца полимера до и после набухания соответственно.
На практике для оценки способности растворителя растворять или вызывать набухание того или иного полимера обычно руководствуются эмпирическим правилом: подобное растворяется в подобном (неполярные полимеры растворяются в неполярных растворителях, а полярные — в полярных).
Для амфотерных полиэлектролитов степень набухания зависит от показателя рН среды. Так, белки в изоэлектрическом состоянии имеют минимальные значения степени гидратации, набухания, растворимости. Зависимость степени набухания белка от значения рН среды выражается кривой с двумя максимумами и одним минимумом, который соответствует изоэлектрической точке.
Качественные реакции. Для идентификации некоторых пептидов и белков используют так называемые «цветные реакции».
Наиболее универсальная реакция на пептидную группу — появление красно-фиолетовой окраски при добавлении к раствору белка ионов меди(П) в щелочной среде (биуретовая реакция):
Реакция на остатки ароматических аминокислот — тирозина и фенилаланина — появление желтой окраски при обработке раствора белка концентрированной азотной кислотой (ксантопротеиновая реакция):
Серасодержащие белки дают черное окрашивание при нагревании с раствором ацетата свинца(II) в щелочной среде (реакция Фоля):
Цветные реакции на белки. Для белковых веществ характерен ряд цветных реакций, которыми обычно пользуются для обнаружения белков в биологических объектах. Важнейшие них следующие.
Биуретовая реакция — сине-фиолетовое или красно-фиолетовое окрашивание при прибавлении к водному раствору белка щелочи и медного купороса. Эта реакция зависит от наличия в белках пептидных связей СО—NH.
Ксантопротеиновая реакция — появление желтого окрашивания под действием концентрированной азотной кислоты. Эта реакция характеризует наличие в белках цикличес-
ких аминокислот (тирозина, фенилаланина, триптофана).
Реакция Миллона — розовое или красное окрашивание при нагревании белков с реактивом, состоящим из смеси азотнокислых и азотистокислых солей ртути в азотной кислоте. Реакция связана с наличием в белке фенильной группы тирозина.
Реакция Адамкевича — сине-фиолетовое окрашивание при прибавлении к белку раствора глиоксиловой кислоты в серной кислоте. Этот цвет обусловлен конденсацией альдегидной группы глиоксиловой кислоты с индольным кольцом триптофана.
Реакция Сакагуши — малиново-красное окрашивание при обработке белка сначала гипохлоритом натрия, а затем раствором β-нафтола. Эта реакция указывает на присутствие белке гуанидиновой группы аргинина.
