
- •1. Масштабы планов и карт: численные, графические. Точность масштаба.
- •2. Классификация машин, применяемых при строительстве газонефтепроводов.
- •3. Когда преимущественно применяют мастичную изоляцию на строящихся газонефтепроводах?
- •4. Основные физические свойства жидкости
- •2. Сжимаемость
- •Билет №2.
- •1. Определение положения точек земной поверхности в географической системе координат.
- •2. Производительность бульдозера.
- •3. Какие материалы используются для приготовления грунтовок (праймера) в полевых условиях?
- •4. Уравнение движения идеальной жидкости.
- •Билет №3.
- •1. Определение положения точек земной поверхности в системе плоских прямоугольных координат (проекция Гаусса).
- •2. Основные методы разрушения (разрыхления) грунта.
- •3. Что такое адгезия?
- •4. Относительное равновесие жидкости.
- •Билет № 4
- •Ориентирование линий относительно географического меридиана; географические азимуты, сближение меридианов, прямые и обратные азимуты, румбы.
- •Одноковшовые экскаваторы.
- •Что характеризует переходное электрическое сопротивление подземного трубопровода?
- •Определение давления жидкости на плоскую стенку.
- •Билет № 5
- •Ориентирование линий относительно осевого меридиана: дирекционные углы, их связь с географическими азимутами; румбы
- •Многоковшовые экскаваторы непрерывного действия (роторные)
- •Что влияет на изменение защитных свойств изоляционных покрытий трубопроводов в процессе их эксплуатации ?
- •4.Построение эпюр давления на плоскую стенку
- •Билет № 6.
- •Ориентирование линий относительно магнитного меридиана, магнитные азимуты, магнитное склонение, румбы.
- •Машины для разработки траншей на заболоченных и обводнённых участках трассы (три типа).
- •Исправность объекта диагноза и её проверка.
- •4.Вывод уравнения Бернулли для элементарной струйки идеальной жидкости.
- •Билет № 7.
- •1. Изображение рельефа горизонталями, абсолютные и условные отметки, сущность метода горизонталей.
- •2. Машины для засыпки траншей.
- •3. Работоспособность объекта диагноза и её проверка.
- •4.Энергетический и геометрический смысл слагаемых уравнения Бернулли.
- •Билет 8.
- •Угловые измерения: измерение горизонтального угла способом отдельного угла(способом приёмов).
- •Классификация горных пород.
- •3.Проверка правильности функционирования объекта диагностирования.
- •4. Режимы течения жидкости. Опыты Рейнольдса.
- •Билет №9
- •Угловые измерения; измерение углов наклона линий. Отличие вертикального круга от горизонтального.
- •2. Трубоукладчики. Общее описание конструкции
- •3.Объекты технического диагноза
- •4. Расчет простого короткого трубопровода.
- •Билет № 10
- •1. Измерение превышений: виды нивелирования. Геометрическое нивелирование
- •10.2.1. Нивелирование из середины
- •3. Физические модели объектов диагноза.
- •4.Расчет длинных трубопроводов.
- •Билет № 11
- •1. Теодолитная съёмка . Этапы теодолитной съёмки
- •2. Машины для сооружения подводных переходов траншейным и бестраншейным способом
- •2 Машины для подводно-технических работ
- •1. Машины для производства земляных работ
- •2. Подводные трубозаглубители
- •3. Оборудование для укладки трубопроводов на дно водоемов
- •4. Судна- трубоукладчики
- •3. Математические модели объектов технического диагноза
- •4. Особенности расчета // и последовательно соединенных труб
- •Билет 12
- •1 . Геометрическое нивелирование. Способы геометрического нивелирования
- •1. Нивелирование из середины
- •2.Нивелирование вперёд
- •3. Преимущества способа нивелирования из середины
- •4.Точность измерения превышений при геометрическом нивелировании
- •2. Прокладка труб с применением способа горизонтального бурения.
- •4. Назначение "Сопротивление материалов". Основные требования, предъявляемые к конструкции и их элементам. Коэффициент запаса.
- •1.Понятие о скважине (элементы, параметры).
- •2. Машины и оборудование для очистки внутренней полости и испытания газонефтепроводов
- •Вопрос 3 Функциональные методы диагностики
- •4.Разновидности расчётов в «Сопротивлении материалов», содержание и особенности.
- •1.Конструкция скважин.
- •2. Запорная арматура газонефтепроводов.
- •3. Тестовые методы диагностики.
- •4.Виды механических испытаний материалов, их назначение и получаемая информация.
- •1.Трубы, применяемые в нефтедобыче (нкт, бурильные, обсадные, для нефтепромысловых коммуникаций).
- •2. Какие сплавы называются: 1) однофазными, 2) твердыми растворами внедрения, 3) твёрдыми растворами замещения
- •4.Назначение допускаемых напряжений для материалов. Факторы, определяющие их назначение.
- •1. Режим эксплуатации нефтяных залежей.
- •2. Какое химическое соединение называют цементитом?
- •2. Сжимаемость
- •4.Монтажные и температурные напряжения.
- •Билет № 17
- •1.Нефтесодержащие породы (типы, основные свойства).
- •3.Потенциальное течение жидкости.
- •4. Содержание расчетов на срез и смятие.
- •Билет № 18
- •Понятие о сборе и подготовке нефти и газа на нефтепромысле.
- •Какие напряжения называются пределом упругости, пределом прочности?
- •Вывод уравнения Бернулли для элементарной струйки идеальной жидкости.
- •Кривизна упругой линии и перемещения при изгибе.
- •Понятие о вращательном бурении нефтяных и газовых скважин.
- •2. Какие трубы называются прямошовными, спиралешовными?
- •3.Построение эпюр давления на плоскую стенку.
- •4.Работа внешних сил при деформировании упругих систем (одновременное и последовательное приложение).
- •1.Стадии разработки месторождений (нефтяных)
- •2.Какие материалы применяют для защиты от коррозии наружных трубопроводов, резервуаров и газгольдеров?
- •3. Режимы течения жидкости. Опыт Рейнольдса.
- •4. Теорема и взаимности работ и перемещений.
- •Билет № 21
- •1.Понятие о месторождении
- •2.1. Понятие о нефтяной и газовой залежи, газонефтяном месторождении, условия их образования
- •2. Что вы знаете о гидроизоляционных материалах проникающего действия?
- •3. Расчет простого короткого трубопровода.
- •4. Расчет длинных стержней на сжатие с обеспечением их устойчивости.
- •1. Нефть: состав, свойства.
- •1. Физико-химические свойства нефти, природного газа, углеводородного конденсата и пластовых вод
- •2. Чем изолируют сварные стыки труб с заводской изоляцией в трассовых условиях?
- •3.Расчет длинных трубопроводов.
- •4. Трубы и сосуды при внешнем и внутреннем давлении.
- •1.Понятие о скважине (элементы, параметры).
- •2. Какие изоляционные материалы относятся к полимерным, битумно-полимерным?
- •3. Расчет простого длинного трубопровода.
- •4. Содержание расчетов на срез и смятие.
3. Режимы течения жидкости. Опыт Рейнольдса.
В зависимости от рода жидкости, скорости ее движения и характера стенок, ограничивающих поток, различают два основных режима движения: ламинарный и турбулентный. Ламинарным называют упорядоченное движение, когда отдельные слои скользят друг по другу, не перемешиваясь (рис. 26, а).
Ламинарный режим движения можно наблюдать чаще у вязких жидкостей, таких как нефть, масла и т. п.
Турбулентным называют режим, при котором наблюдается беспорядочное движение, когда частицы жидкости движутся по сложным траекториям и слои жидкости постоянно перемешиваются друг с другом (рис. 26, б).
Существование двух режимов движения жидкости было замечено в 1839 г. Хагеном и в 1880 г. Д. И. Менделеевым.
Д
остаточно
полные лабораторные исследования
режимов движения и вопрос их
влияния на характер зависимости потерь
напора от скорости впервые исследовал
английский физик Рейнольдс.
Установка Рейнольдса для исследования режимов движения жидкости представлена на рис. 27. Сосуд А заполняется испытуемой жидкостью. К сосуду А в нижней его части присоединена стеклянная трубка 1 с краном 2, которым регулируется скорость течения в трубке. Над сосудом А расположен сосуд Б с раствором краски. От сосуда Б отходит трубка 3 с краном 4. Конец трубки 3 заведен в стеклянную трубку 1. Для пополнения сосуда А служив трубка 5 с запорным устройством 6.
При ламинарном режиме движения жидкости по трубке 1 струйка раствора краски, истекающей из трубки 3, имеет вид четко вытянутой нити вдоль трубки 1.
По мере открытия крана 2 увеличивается скорость движения и режим движения переходит в турбулентный, при этом струйка приобретает волнообразный характер, а при еще большей скорости совсем размывается и смешивается с жидкостью в трубке. При постепенном закрытии крана эти явления протекают в обратном порядке, т. е. турбулентный режим сменяется ламинарным.
Опыты показали, что переход от турбулентного режима к ламинарному происходит при определенной скорости (эта скорость называется критической), которая различна для разных жидкостей и диаметров труб; при этом критическая скорость растет с увеличением вязкости жидкости и с уменьшением диаметра труб.
Рейнольдсом и рядом других ученых опытным путем было установлено, что признаком режима движения является некоторое безразмерное число, учитывающее основные характеристики потока
, (82)
где – скорость, м/сек; R - гидравлический радиус, м; v - кинематический коэффициент вязкости, м2/сек.
Это отношение называется числом Рейнолъдса. Значение числа Re, при котором турбулентный режим переходит в ламинарный, называют критическим числом Рейнолъдса ReKp.
Если фактическое значение числа Re, вычисленного по формуле (82), будет больше критического Re > ReKp – режим движения турбулентный, когда Re < ReKp – режим ламинарный.
Для напорного движения в цилиндрических трубах удобнее число Рейнольдса определять по отношению к диаметру d, т. е.
, (82')
где d – диаметр трубы.
В этом случае ReKp получается равным ~2300. Если в формуле (82') для трубопроводов круглого сечения d выразить через гидравлический радиус , то получим ReKp=575. Для других трубопроводов и каналов некруглых сечений можно принимать значение критического числа Рейнольдса ReKp=300 (при вычислении Re через гидравлический радиус).