
- •5. Mathematica. Назначение Ядра пакета. Понятие сессии.
- •6. Mathematica. Главный цикл пакета.
- •7.Mathematica. Формы представления выражения.
- •8. Mathematica. Структура выражения. Функции, ее определяющие.
- •9. Mathematica. Назовите не менее пяти видов выходных форматов выражения.
- •10. Mathematica. Атомарные объекты, входной формат и полная форма каждого вида.
- •11. Mathematica. Функции-конверторы, позволяющие преобразовывать тип атомарных объектов.
- •12. Mathematica. Функции, определяющие свойства атомарных объектов.
- •13. Mathematica. Встроенные константы и предопределенные переменные пакета.
- •14. Mathematica. Оператор Apply и семейство операторов Map.
- •15. Mathematica. Укажите четыре формы записи функций.
- •16. Mathematica. Чистые и анонимные функции.
- •17. Mathematica. Построение функции пользователя.
- •18. Mathematica. Что такое образцы и где они используются. Проверка на соответствие образцу.
- •20. Mathematica. Организация справочной системы.
- •21. Mathematica. Именование образца и его части. Примеры.
- •22. Mathematica. Образцы, соответствующие условию. Примеры.
- •23. Mathematica. Образцы, содержащие альтернативу. Примеры.
- •24 Mathematica. Установка значений аргументов функции по умолчанию. Примеры.
- •25. Mathematica. Использование в образцах встроенных по умолчанию значений. Примеры.
- •26. Mathematica. Функции, осуществляющие поиск выражений, соответствующих образцу.
- •27. Mathematica. Функции порождения списков.
- •28. Mathematica. Функции добавления, извлечения, удаления элементов из списков.
- •29. Mathematica. Операции над списками как над множествами.
- •30. Mathematica. Изменение структуры списка.
- •31. Mathematica. Функции Inner и Outer работы со списками.
- •32. Mathematica. Функции семейства Nest и Fold.
- •33. Mathematica. Механизм нижних значений.
- •34. Mathematica. Механизм верхних значений.
- •35. Mathematica. Как определяются глобальные правила преобразований.
- •36. Mathematica. Функции семейства Replace.
- •37. Mathematica. Локальные правила преобразований.
- •38. Mathematica. Укажите не менее девяти атрибутов, которые можно присвоить функции.
- •39. Mathematica. Стандартныей порядок вычисления выражения.
- •40. Mathematica. Как можно изменить стандартный порядок вычисления выражения.
- •41. Mathematica. Конструкции, управляющие ходом вычисления.
- •42. Mathematica. Управляющие структуры выбора.
- •43. Mathematica. Управляющие структуры повторения.
- •44. Mathematica. Обработка аварийного (намеренного) выхода из упарвляющих к онструкций.
- •45. Mathematica. Двумерные графический примитивы.
- •46. Mathematica. Трехмерные графические примитивы.
- •47. Mathematica. Построение матриц и операции над ними, особенности.
- •48. Mathematica. Преобразование алгебраических выражений.
- •49. Mathematica. Решение уравнений и систем.
- •50. Mathematica. Функции двумерной графики, их опции.
- •51. Mathematica. Функции трехмерной графики, их опции.
10. Mathematica. Атомарные объекты, входной формат и полная форма каждого вида.
Атомарный объект – это тип данных, который не может быть разделен на подвыражения (другими словами, чьи подвыражения недоступны функциям, таким как Map. Атомарные объекты имеют вид Head [atom]. Существуют два основных класса атомарных объектов: 1) Численные данные(целые (Integer) 5,2; рациональные (Rational) Rational[m,n]; вещественные (Real) 2,3; комплексные (Complex) Complex[a,b]), 2) Символьные данные (символы (Symbol) a,b,c; строки (String) "abc")
11. Mathematica. Функции-конверторы, позволяющие преобразовывать тип атомарных объектов.
ToExpression преобразует данные типа String в выражение; ToString возвращает вычисленное выражение с головой String; Rationalize[x,eps] дает рациональное приближение вещественного x с точностью eps; Floor возвращает наибольшее целое, не превосходящее указанное рациональное или вещественное число; Ceiling возвращает наименьшее целое, превосходящее указанное рациональное или вещественное число; Round дает целое число, ближайшее к указанному рациональному или вещественному; N преобразует в тип Real или Complex; Chop в указанном выражении заменяет нулями все числа, меньшие 10^-10
12. Mathematica. Функции, определяющие свойства атомарных объектов.
AtomQ[expr] – возвращает true, если expr атомарный объект. NumberQ[expr] – возвращает true, если expr относится к Integer, Real, Rational или Complex, и false в обратном случае. NumericQ[expr] – true, если expr относится к числовым типам данных. IntegerQ[expr] – служит для проверки, является ли expr целым числом. EvenQ[expr] – проверяет, является ли expr четным. OddQ[expr] – проверяет, является ли expr нечетным. PrimeQ[expr] – проверяет, является ли expr простым числом. Positive, NonNegative, Negative, NonPositive – четыре функции с совершенно одинаковым синтаксисом, проверяющие expr на положительность, неотрицательность, отрицательность и неположительность соответственно.
13. Mathematica. Встроенные константы и предопределенные переменные пакета.
Константы – атомарные выражения, несущие заранее определенные значения. Числовые константы представлены Integer, Rational, Real, Complex. В системе есть встроенные константы имеющие имя, являющиеся символом и представленные числом (EulerGamma, Catalan, GoldenRatio). Предопределенные переменные служат для управления режимом функционирования пакета. Их имена начинаются с $. $MinMachineNumber минимальное представимое число 2,2*10^-308 $MaxMachineNumber максимальное представимое число 8,9*10^307 и т.д.
14. Mathematica. Оператор Apply и семейство операторов Map.
/@ - операторная форма функции Map. Function /@ {expr1,...,exprn} подействовали функцией Function на выражения expr1,...,exprn. Оператор @@ представляет функцию Apply. Head @@ Expression убирает голову выражения Expression и на ее место ставит указанную голову Head
15. Mathematica. Укажите четыре формы записи функций.
Полная форма - Sin[3.141]; Префиксная форма - Sin @ 3.141; Постфиксная форма - 3.141 // Sin; Инфиксная форма - b~Plus~1