Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biologi-11.doc
Скачиваний:
4
Добавлен:
14.09.2019
Размер:
296.96 Кб
Скачать

4

Органические вещества – сложные углеродсодержащие вещества (углеводы, белки, жиры, нуклеиновые кислоты и АТФ). Углеводы и жиры способны в организме превращаться друг в друга. Белки также могут преобразовываться в жиры и углеводы. Функции углеводов: энергетическая (кислородное расщепление глюкозы); структурная (входят в состав покровов, хрящей); участвуют в синтезе других органических веществ (например, жиров); являются источником метаболической воды в организме (при расщеплении глюкозы до конечных продуктов).

Функции жиров: входят в состав внутриклеточных структур; выделяют энергию в результате процессов диссимиляции; защищает клетку и организм от резких колебаний температуры и механических повреждений запасают необходимое клетке вещество и энергию являются источником метаболической воды

Функции белков в клетке: строительная, синтез собственных специфических белков; каталитическая, ускоряют химические реакции; регуляторная, осуществляется с помощью гормонов; двигательная, мышечные белки, с помощью которых осуществляется работа мышц; транспортная, перенос кислорода и углекислого газа с помощью белка – глобина; защитная, выработка белков – антител.

5

Строение

Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.

Биологическая роль нуклеиновых кислот заключается в том, что ДНК хранит наследственную информацию организма в виде последовательности дезоксирибонуклеотидов, различающихся азотистыми основаниями. В ДНК в закодированном виде записан соста всех белков организма. Каждой аминокислоте, входящей в состав белков, соответствует свой код в ДНК, а именно - три конкретных нуклеотида. Молекулы РНК переносят информацию от ДНК к местам клетки, где происходит синтез белка. [1]

.11.

Уровни организации живой материи

Молекулярный. Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.

Клеточный. Клетка структурная и функциональная единица, а также единица развития всех живых организмов, обитающих на Земле. На клеточном уровне сопрягаются передача информации и превращение веществ и энергии.

Организменный. Элементарной единицей организменного уровня служит особь, которая рассматривается в развитии — от момента зарождения до прекращения существования — как живая система. На этом уровне возникают системы органов, специализированных для выполнения различных функций.

Популяционно-видовой. Совокупность организмов одного и того же вида, объединенная общим местом обитания, в которой создается популяция — надорганизменная система. В этой системе осуществляются элементарные эволюционные преобразования — процесс микроэволгоции.

Биогеоценотический. Биогеоценоз совокупность организмов разных видов 'и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые сообщества.

Биосферный. Биосфера совокупность всех биогеоценозов, система, охватывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.

13

ПРОКАРИОТЫ, организмы, клетки которых не имеют оформленного, ограниченного мембраной ядра («прокариоты» буквально означает «доядерные»). К прокариотам относятся все бактерии, включая цианобактерии (по другой классификации – синезелёные водоросли). Генетический материал у прокариот представлен примитивной хромосомой, состоящей из одной расположенной в цитоплазме и замкнутой в кольцо молекулы ДНК. Многие органоиды, свойственные клеткам «ядерных» организмов – эукариот. у прокариот отсутствуют. У них нет митохондрий, эндоплазматической сети, аппарата Гольджи и ряда др. органоидов, т. е. более древние прокариотические клетки лишены тех мембранных структур, которые организуют и упорядочивают строение и деятельность эволюционно более поздних эукариотических клеток. Митоз у прокариот также отсутствует. Размножаются они делением надвое. Различия между прокариотами и эукариотами столь велики, что систематики рассматривают эти группы организмов как два самых крупных подразделения живой природы – надцарства.

Роль:

Прокариоты (бактерии и археи) имеют исключительное значение для жизни на Земле: им принадлежит основополагающая роль в циклических превращениях основных элементов, необходимых для жизни (углерод, кислород, азот, сера, фосфор). Циклические превращения элементов, из которых построены живые организмы, в совокупности представляют круговорот веществ. В настоящее время неоспоримо доказано, что определенные этапы циклов осуществляют исключительно прокариоты, обеспечивая замкнутость циклов основных биогенных элементов в биосфере.

16

47. Аэробные и анаэробные микроорганизмы

Различные бактерии неодинаково от­носятся к наличию или отсутствию сво­бодного кислорода. По этому признаку они делятся на три группы: аэробы, анаэробы и факультативные анаэробы. Строгие аэробы, напр, синегнойная па­лочка, могут развиваться лишь при на­личии свободного кислорода. Анаэробы, напр. возбудители газовой гангрены, столбня­ка, Развиваются без доступа свобод­ного кислорода, присутствие к-рого угнетает их жизнедеятельность. Нако­нец, факультативные анаэробы, напр, возбудители кишечных инфекций, разви­ваются как в кислородной, так и в бес­кислородной среде. Аэробность или анаэробность бакте­рий обусловливается способом получе­нии ими энергии, необходимой для обес­печения процессов жизнедеятельности. Нек-рые бактерии (фотосинтезирующие) способны, подобно растениям, исполь­зовать непосредственно энергию солнеч­ного света. Остальные (хемосинтезирующяе) получают энергию в ходе раз­личных химических реакций. Сущест­вуют бактерии (хемоавтотрофы), окис­ляющие неорганические вещества (амми­ак, соединения серы и железа и др.). Но для большинства бактерий источни­ком энергии служат превращения орга­нических соединений: углеводов, бел­ков, жиров и лр. Аэробы используют реакции биологического окисления с участием свободного кислорода (дыхание), в результате к-рых органические соединения окисляются до углекислого газа и воды. Анаэробы получают энер­гию при расщеплении органических соединений без участия свободного кис­лорода. Такой процесс называется бро­жением. При брожении, кроме углекис­лого газа, образуются различные соеди­нения, напр, спирты, молочная, мас­ляная и другие кислоты, ацетон.

.8.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]