
- •Конспект лекций По предмету «Статистика»
- •Содержание
- •Глава 1 Введение. Понятие статистики, предмет и методология. Основные определения………………………………………………………………………......4
- •Глава 2 Статистический анализ рядов распределения…………………….….14
- •Глава 3 Выборочное наблюдение………………………………………………..26
- •Глава 4 Статистическое изучение связей. Корреляционно-регрессионный анализ………………………………………………………………………………..33
- •Глава 5 Статистический анализ временных рядов……………………………45
- •Глава 1 Введение. Понятие статистики, предмет и методология. Основные определения.
- •1.1 Понятие статистики. Предмет и объект изучения статистики
- •1.2 Методология статистики
- •1.3 Этапы статистического исследования
- •1.3.1 Статистическое наблюдение
- •1.3.2 Сводка и группировка данных
- •1.4 Статистические показатели
- •1.4.1 Средняя арифметическая простая
- •1.4.2 Средняя арифметическая взвешенная
- •1.4.3 Средняя гармоническая
- •1.4.4 Средняя геометрическая
- •1.4.5 Средняя квадратическая
- •Глава 2 Статистический анализ рядов распределения
- •2.1 Построение ряда распределения
- •2.2 Графическое изображение вариационных рядов
- •2.3 Показатели центра и структуры распределения
- •2.4 Показатели вариации
- •Среднее линейное отклонение
- •3. Дисперсия
- •4. Среднее квадратическое (стандартное) отклонение
- •Относительное линейное отклонение
- •2.5 Характеристика формы распределения
- •2.6 Выравнивание эмпирических распределений и оценка соответствия эмпирического распределения теоретическому
- •Глава 3 Выборочное наблюдение
- •3.1 Способы отбора единиц в выборочную совокупность
- •3.2 Виды выборки
- •3.3 Ошибка репрезентативности (ошибка выборки)
- •3.4 Правило сложения дисперсий
- •3.5 Ошибка выборки для доли
- •3.6 Определение объема выборки
- •3.7 Особенности малой выборки
- •Глава 4 Статистическое изучение связей. Корреляционно-регрессионный анализ
- •Функционально (жестко-детерминированная) связь
- •2) Статистические связи и зависимости (стохастически детерминированная).
- •4.1 Причины возникновения корреляционной зависимости
- •4.2 Условия применения методов корреляционно-регрессионного анализа
- •4.3 Графическое изображение корреляционной зависимости
- •Показатели корреляции
- •Коэффициент корреляции
- •Коэффициент детерминации
- •Корреляционное отношение
- •Индекс корреляции
- •4.5 Регрессионный анализ. Парное и множественное уравнение регрессии
- •4.5.1 Уравнение парной регрессии
- •4.5.2 Уравнение множественной регрессии
- •4.5.3 Построение матрицы парных коэффициентов корреляции. Отбор факторов
- •4.5.4 Коэффициенты эластичности и β-коэффициенты
- •4.6 Оценка статистической значимости уравнения регрессии и его параметров
- •4.6.1 Оценка статистической значимости уравнения регрессии
- •4.6.2 Оценка статистической значимости параметров уравнения
- •Глава 5 Статистический анализ временных рядов (рядов динамики)
- •5.1 Показатели изменения уровней временного ряда
- •1) Абсолютный прирост;
- •4) Абсолютное значение 1% прироста.
- •Абсолютный прирост
- •1. Абсолютный цепной прирост
- •2. Абсолютный прирост базисный
- •Темп роста (коэффициент роста)
- •5.3.2 Изучение основной тенденции временного ряда. Выравнивание рядов динамики
- •5.3.3 Экстраполяционное прогнозирование на основе трендовых моделей
- •5.4 Автокорреляция в рядах динамики (автокорреляция уровней временных рядов)
- •5.5 Корреляция рядов динамики
- •5.6 Изучение сезонности в динамических рядах
- •5.7 Статистические индексы. Индексный анализ
- •1) Индивидуальные (I)
- •2) Общие индексы (сводные, I)
- •5.7.1 Агрегатные индексы
- •5.7.2 Индексы Ласпейреса и Пааше
- •5.7.3 Идеальный индекс Фишера
- •5.7.4 Индексы средние из индивидуальных
- •5.7.3 Индексы-дефляторы
Корреляционное отношение
Коэффициенты корреляции пригодны в большей для оценки линейной зависимости между изучаемыми признаками. Если связь нелинейная, то следует отдать предпочтение показателю, который называется корреляционное отношение. Оно может быть:
Эмпирическое (т.е. рассчитанное по данным аналитической группировки).
Теоретическое (т.е. рассчитанное по результатам регрессионного анализа).
- эмпирическое
- теоретическое
-
выровненное или полученное по уравнению
регрессии значение признака-результата
у i-ой единицы теоретическое
значение признака-результата.
yi – исходные данные.
Корреляционное отношение изменяется также от нуля до единицы и комментируется аналогично коэффициенту корреляции.
Квадрат корреляционного отношения (
)-
коэффициент детерминации.
Индекс корреляции
Индекс корреляции рассчитывается по следующей формуле:
4.5 Регрессионный анализ. Парное и множественное уравнение регрессии
Аналитическое представление корреляционной зависимости называется уравнением регрессии.
Парная корреляционная зависимость описывается уравнением парной регрессии, множественная корреляционная зависимость – уравнением множественной регрессии.
Признак-результат в уравнении регрессии – это зависимая переменная, а признак-фактор – независимая переменная.
4.5.1 Уравнение парной регрессии
Простейшим видом уравнения регрессии является парная линейная зависимость.
где y – зависимая переменная (признак-результат),
x – независимая переменная (признак-фактор).
В качестве уравнения регрессии могут быть выбраны различные математические функции: чаще всего исследуется линейная зависимость, парабола, гипербола, степная функция. Но исследование начинается с линейной зависимости, так как результаты поддаются содержательной интерпретации.
При нанесении на поле корреляции точек, координаты которых соответствуют значениям зависимых и независимых переменных выявляется тенденция связи между ними.
Смысл построения уравнения регрессии состоит в описании тенденции зависимости признака-результата от признака-фактора.
Если линия регрессии проходит через все точки поля корреляции, то эта функциональная связь. Так как всегда присутствует ошибка, поэтому нет функциональной связи.
Наличие ошибки связано с тем что:
не все факторы, влияющие на результат, учитываются в уравнении регрессии;
может быть неправильно выбрано уравнение регрессии или форма связи.
Уравнение регрессии описывает изменения условного среднего значения признака-результата под влиянием конкретных значений признака-фактора, то есть это аналитическая форма тенденции зависимости между изучаемыми признаками. Уравнение регрессии строится на основе фактических значений признаков, и для его использования нужно рассчитать параметры уравнения а и b. Определение значений параметров, как правило, выполняется с использованием методов наименьших квадратов (МНК).
Суть метода состоит в том, что удается минимизировать сумму квадратов отклонений фактических значений признака-результата от теоретических, рассчитанных на основе уравнения регрессии, что оценивает степень аппроксимации поля корреляции уравнением регрессии.
Задача состоит в решении задачи на экстремум, то есть найти при каких значениях параметров а и в функции S достигает минимума.
Проводя дифференцирование, приравниваем
частные производные к нулю
и
,
получаем систему уравнений. Решая ее,
находим значения параметров а и в.
Параметр в в уравнении регрессии называется коэффициентом регрессии и характеризует на сколько единиц своего измерения изменится признак-результат при изменении признака-фактора на единицу своего измерения. Знак при коэффициенте регрессии характеризует направленность зависимости (прямая или обратная). Параметр а в уравнении регрессии содержательно не интерпретируется, а характеризует лишь расположение линии на графике.
Пример.
Данное уравнение показывает тенденцию зависимости заработной платы (у) от прожиточного минимума (х). Коэффициент в (в данном случае равный 0,92) характеризует следующее: при увеличении на 1 рубль потребительской корзины заработная плата возрастает на 92 копейки.