Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мой экзамен.doc
Скачиваний:
5
Добавлен:
12.09.2019
Размер:
537.6 Кб
Скачать

Напряженность и потенциал электростатического поля

 В проводниках имеются электрически заряженные частицы – носители заряда (электроны в металлах, ионы в электролитах), способные перемещаться по всему объему проводника под действием внешнего электростатического поля. В настоящем разделе мы ограничимся рассмотрением твердых металлических проводников.

Носителями заряда в металлах являются электроны проводимости. Они возникают при конденсации паров металла за счет обобществления валентных электронов.

При отсутствии электростатического поля металлический проводник является электрически нейтральным – электростатическое поле, создаваемое положительными и отрицательными зарядами внутри него, компенсируется.

При внесении металлического проводника во внешнее электростатическое поле электроны проводимости перемещаются (перераспределяются) до тех пор, пока всюду внутри проводника поле электронов проводимости и положительных ионов не скомпенсирует внешнее поле.

 Итак, в любой точке внутри проводника, находящегося в электростатическом поле  ;   т.е.  , в идеальном проводнике диэлектрическая проницаемость 

 На поверхности проводника напряженность   (рис. 5.1) должна быть направлена по нормали к этой поверхности, иначе, под действием составляющей Eτ , касательной к поверхности, заряды перемещались бы по проводнику, а это противоречило бы их статическому распределению.

Вне заряженного проводника поле есть, следовательно, должен быть вектор  , и направлен он перпендикулярно поверхности.

Рис. 5.1

      Итак, в установившимся состоянии в проводнике, помещенном в электростатическое поле имеем:

 ·     Появление у заряженной поверхности на металле заряда противоположного знака – электростатическая индукция. Этот процесс очень краток ~ 10–8 с.

      ·     Электростатическое экранирование – внутрь проводника поле не проникает.

      ·     Во всех точках внутри проводника  , а во всех точках на поверхности 

 ·     Весь объем проводника, находящегося в электростатическом поле, эквипотенциален. Действительно, в любой точке внутри проводника  , следовательно,  Поверхность проводника тоже эквипотенциальна:  , т.к.  .

 ·     Потенциал поверхности равен потенциалу объема проводника.

 ·     В заряженном проводнике некомпенсированные заряды располагаются только на поверхности (их расталкивают кулоновские силы).Можно доказать это последнее утверждение формально: проведем внутри проводника произвольную замкнутую поверхность S, ограничив некоторый объем внутри проводника. Тогда, согласно теореме Остроградского-Гаусса, суммарный заряд q этого объема равен

, так как E = 0.

Будем искать, каким образом связаны напряженность электростатического поля, которая является его силовой характеристикой, и потенциал, который есть его энергетическая характеристика поля.  Работа по перемещению единичного точечного положительного электрического заряда из одной точки поля в другую вдоль оси х при условии, что точки расположены достаточно близко друг к другу и x2—x1=dx, равна Exdx. Та же работа равна φ1—φ2=dφ. Приравняв обе формулы, запишем   (1)  где символ частной производной подчеркивает, что дифференцирование осуществляется только по х. Повторив эти рассуждения для осей у и z, найдем вектор Е   где ijk — единичные векторы координатных осей х, у, z.  Из определения градиента следует, что   или   (2)  т. е. напряженность Е поля равна градиенту потенциала со знаком минус. Знак минус говорит о том, что вектор напряженности Е поля направлен в сторону уменьшения потенциала.  Для графического представления распределения потенциала электростатического поля, как и в случае поля тяготения, пользуютсяэквипотенциальными поверхностями — поверхностями, во всех точках которых потенциал φ имеет одинаковое значение.  Если поле создается точечным зарядом, то его потенциал, согласно формуле потенциала поля точечного заряда, φ=(1/4πε0)Q/r .Таким образом, эквипотенциальные поверхности в данном случае — концентрические сферы с цетром в точечном заряде. Заметим также, линии напряженности в случае точечного заряда — радиальные прямые. Значит, линии напряженности в случае точечного зарядаперпендикулярны эквипотенциальным поверхностям.  Линии напряженности всегда перпендикулярны к эквипотенциальным поверхностям. В самом деле, все точки эквипотенциальной поверхности обладают одинаковым потенциалом, поэтому работа по перемещению заряда вдоль этой поверхности равна нулю, т. е. электростатические силы, которые действуют на заряд, всегда направлены по перпендикурярам к эквипотенциальным поверхностям. Значит, вектор Е всегда перпендикулярен к эквипотенциальным поверхностям, а поэтому линии вектора Е перпендикулярны этим повер¬хностям.  Эквипотенциальных поверхностей вокруг каждого заряда и каждой системы зарядов можно провести бесконечное множество. Но обычно их проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверхностями были равны друг другу. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где гуще расположены эти поверхности, напряженность поля больше.  Значит, зная расположение линий напряженности электростатического поля, можно нарисовать эквипотенциальные поверхности и, наоборот, по известному нам расположению эквипотенциальных поверхностей можно найти в каждой точке поля направление и модуль напряженности поля. На рис. 1 в качестве примера показан вид линий напряженности (штриховые линии) и эквипотенциальных поверхностей (сплошные линии) полей положительного точечного электрического заряда (а) и заряженного металлического цилиндра, который имеет на одном конце выступ, а на другом — впадину (б).