
- •Тема 19. Концепции клеточного строения и функционирования живой материи
- •I. История открытия клеточного строения живых организмов
- •II. Разнообразие клеток и способы их деления
- •Способы деления клеток эукариот
- •Митоз Мейоз
- •III. Химический и молекулярный состав клеток
- •Химические элементы клеток
- •Строение клетки
- •Типы клеток
- •Животная клетка
- •Тема 20. Концепция биологической информации и самовоспроизведения жизни
- •I. Белки, их строение, свойства и функции
- •Мономер белка — аминокислота.
- •II. Нуклеиновые кислоты и их роль в передаче наследственной информации
- •Существует 2 типа нуклеиновых кислот: днк и рнк
- •Строение мономера днк (нуклеотида)
- •Уровни организации днк
- •Определенное сочетание нуклеотидов и последовательность их расположения в молекуле днк является кодом, несущим информацию о белке.
- •Свойства генетического кода
- •Тема 21. Закономерности наследования и изменчивости признаков
- •I. История генетики
- •II. Законы Менделя
- •III. Основные положения хромосомной теории
II. Законы Менделя
В 1856–66 годах чешским монахом натуралистом Грегором Иоганном Менделем (1822-1884) были поставлены знаменитые опыты, результатом которых стало появление новой науки – генетики.
Мендель установил закономерности наследования признаков. В 1865 г. он опубликовал книгу "Опыты над растительными гибридами".
Объектом для экспериментов был выбран огородный горох, так как существует множество его сортов, чётко различающихся по ряду признаков; растения легко выращивать и скрещивать.
Скрещивание двух организмов называется гибридизацией, потомство от скрещивания двух особей с разной наследственностью называют гибридным, а отдельную особь — гибридом.
Скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков называется моногибридным скрещиванием, по двум парам признаков – дигибридным скрещивание, а по множеству пар признаков - полигибридным скрещиванием.
Явление преобладания у гибрида признака одного из родителей назваемся доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, а противоположный, т, е. подавляемый, признак — рецессивным.
Если в генотипе организма (зиготы) два одинаковых аллельных гена — оба доминантные или оба рецессивные (АА или аа), такой организм называется гомозиготным. Если же из пары аллельных генов один доминантный, а другой рецессивный (Аа), то такой организм носит название гетерозиготного.
Первый закон, или закон единообразия гибридов первого поколения, утверждает, что при скрещивании организмов, различающихся аллельными признаками, в первом поколении гибридов проявляется лишь один из них – доминантный, а альтернативный ему, рецессивный, остаётся скрытым
Второй закон, или закон расщепления, гласит, что при скрещивании между собой двух гибридов первого поколения (или при их самоопылении) во втором поколении проявляются в определённом соотношении оба признака исходных родительских форм. Расщепление по генотипу 1:2:1 , по фенотипу 3:1.
Третий закон, или закон независимого комбинирования, утверждает, что при скрещивании гомозиготных особей, отличающихся по двум и более парам альтернативных признаков, каждая из таких пар (и пар аллельных генов) ведёт себя независимо от других пар, т. е. и гены, и соответствующие им признаки наследуются в потомстве независимо и свободно комбинируются во всех возможных сочетаниях.
Схема, иллюстрирующая единообразие гибридов первого поколения F1 (первый закон Менделя) и расщепление признаков у потомства второго поколения F2 с преобладанием доминантного фенотипа над рецессивным в отношении 3 : 1 (второй закон Менделя); A — доминантный ген, а — рецессивный ген. Заштрихованный круг — доминантный фенотип, а светлый — рецессивный. |
Схема, иллюстрирующая независимое комбинирование признаков (третий закон Менделя). \Наследование жёлтой (В) и зелёной (b) окраски семян, а также круглой (А) и морщинистой (а) их формы. А и В доминируют над аллелями а и b. Генотипы родителей и потомков обозначены комбинацией указанных букв, а четыре разных фенотипа — при помощи различной штриховки. |
В современной интерпретации основные положения теории наследственности Менделя следующие:
За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы — гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)
Дискретность наследственности состоит в том, что отдельные свойства и признаки организма развиваются под контролем наследственных факторов (генов), которые при слиянии гамет и образовании зиготы не смешиваются, не растворяются, а при формировании новых гамет наследуются независимо друг от друга.
Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой — от матери.
Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).