
- •Рентгеновское излучение.
- •Распределение Ма́ксвелла
- •Свойства электрического заряда
- •Опыт Милликена.
- •Электрическое поле в диэлектриках
- •Электрическое смещение
- •Связанные заряды
- •Диэлектрическая проницаемость
- •Постоянный ток
- •Работа и мощность тока
- •Постоянное магнитное поле в вакууме. Индукция магн.Поля. Закон био-савара. Магн.Поле прямого и кругового тока.
- •Магнитное поле соленоида.
- •Классификация магнетиков
Работа и мощность тока
При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном учестке совершает работу
ΔA = (φ1 – φ2) Δq = Δφ12 I Δt = U I Δt, |
где U = Δφ12 – напряжение. Эту работу называют работой электрического тока.
Если обе части формулы
RI = U, |
выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение
R I2 Δt = U I Δt = ΔA. |
Это соотношение выражает закон сохранения энергии для однородного участка цепи.
Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.
ΔQ = ΔA = R I2 Δt. |
Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца.
Мощность
электрического тока равна отношению
работы тока ΔA
к интервалу времени Δt,
за которое эта работа была совершена:
Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).
Введем
плотность тепловой мощности
,
равную энергии выделенной за единицу
время прохождения тока в каждой единице
объема проводника
где
S - поперечное сечение проводника,
-
его длина. Используя (1.13) и соотношение
,
получим
Но
-
плотность тока, а
,
тогда
с
учетом закона Ома в дифференциальной
форме
,
окончательно получаем
|
(17.14) |
Формула (17.14) выражает закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.
Первое правило Кирхгофа является выражением того факта, что в случае установившегося постоянного тока ни в одной точке проводника и ни на одном его участке не должны накапливаться электрические заряды и формулируется в следующем виде: алгебраическая сумма токов, сходящихся в узле, равна нулю
|
(17.15) |
Второе правило Кирхгофа является обобщением закона Ома на разветвленные электрические цепи.
|
(17.16) |
В любом замкнутом контуре произвольной разветвленной электрической цепи, алгебраическая сумма падений напряжений (произведений сил токов на сопротивление) соответствующих участков этого контура равна алгебраической сумме эдс входящих в контур.
Мост уитстона (измерительный мост), электрическая цепь, используемая для измерения сопротивления; названа по имени Чарльза УИТСТОНА. Состоит из четырех сопротивлений, соединенных квадратом, причем в одну диагональ включен источник питания (напряжение от батареи), а в другую - ГАЛЬВАНОМЕТР. Когда стрелка гальванометра не отклоняется (тока в диагонали нет), отношение величин одной смежной пары резисторов равно отношению величин другой пары. Регулируя отношение величин в одной паре (плавно двигая контакт вдоль проволоки, формирующей одно из сопротивлений смежной пары), можно вычислить неизвестное сопротивление одного из резисторов другой пары.