
- •Процеси виготовлення мікросхем
- •Практичні рекомендації
- •1 Вступ
- •2 Основна частина
- •Послідовність формування та схема технологічного процесу дифузійно - планарних імс
- •2.2 Послідовність формування та схема технологічного процесу епітаксійно - планарних імс
- •2.3 Послідовність формування та схема технологічного процесу V - канальних німс
- •2.4 Послідовність формування та схема технологічного процесу виготовлення німс з діелектричною ізоляцією
- •1 Фотолітогра-фія на SiO
- •2 Фото-літографія на Si
- •Впровадження домішки у напівпровідники шляхом термічної дифузії
- •Практичні способи проведення дифузії
- •2.6 Впровадження домішки у напівпровідники шляхом іонної імплантації
- •2.7 Автоепітаксія кремнію як базовий технологічний процес виготовлення imc
- •2.7.1 Хлоридний та силановий методи
- •2.7.2 Молекулярно – променева епітаксія
- •2.8 Загальна характеристика фотолітографічного процесу
- •2.8.1 Технологічні процеси фотолітографії
- •2.8.3 Електронно-променева літографія
- •2.8.4 Іонна і голографічна літографія
- •2.9 Схема технологічного процесу виготовлення товсто- плівкових гімс. Характеристика та трафаретний друк товстоплівкових елементів
- •2.9.1 Технологічні особливості товстоплівкових мікросхем
- •2.9.2 Трафаретний друк елементів
- •2.10 Загальна характеристика методів та етапів складання імс
- •2.10.1 Операції до складання
- •2.10.2 Монтаж кристалів
- •2.10.3 Приєднання виводів
- •2.10.4 Герметизація мікросхем
- •Список рекомендованої літератури
2.7.2 Молекулярно – променева епітаксія
Молекулярно – променева епітаксія ( МПЕ ) – це метод орієнтованого нарощування речовин при конденсації молекулярних пучків у вакуумі. При цьому методі нарощування епітаксійних шарів проходить при більш низьких температурах ( 400 ÷ 800˚С ). Це зменшує вплив дифузії домішок з підкладки. Крім того, цей метод дозволяє легко варіювати профіль легування.
Молекулярно – променева епітаксія проводиться в спеціальних установках, в яких використовуються два способи легування. Один з них основний на легуванні атомами домішки, які випаровуються ( рис.3 ), а другий – на іонній імплантації.
Рисунок 3 - Схема установки молекулярно – променевої епітаксії з легуванням на основі випаровування домішок
1- робоча камера; 2- тримач підкладки; 3- нагрівач; 4- підкладка; 5- заслінка; 6- потік домішки; 7- джерело домішки; 8- електронна гармата; 9- джерело кремнію; 10- потік електронів; 11- потік кремнію.
Після випаровування атоми кремнію і легуючої домішки досягають поверхні і вбудовуються в кристалічні гратки.
При другому методі легування нарощування епітаксійної плівки полягає в імплантації іонів із прискорених іонних пучків. Іонний пучок вводиться в робочу камеру, сканується в горизонтальному та вертикальному напрямках і змішується з пучком молекул кремнію на підкладці. Як звичайно, поверхня підкладки покрита шаром , тому початковий період росту епітаксійного шару може мати суттєві відміни.
2.8 Загальна характеристика фотолітографічного процесу
2.8.1 Технологічні процеси фотолітографії
Фотолітографія - це технологічний процес, який базується на використанні фотохімічних реакцій, що виникають в фоторезистивних шарах при актинічному їх опроміненні.
Актинічним називається опромінювання, яке викликає незворотні зміни властивостей фоторезистивного шару. Для цього використовують два типи фоторезистивних матеріалів ( негативні та позитивні ).
Негативні фоторезисти ( ФН ) під дією актинічного опромінювання полімеризуються і утворюють захисний шар, стійкий до травників, які застосовуються в технологічному процесі виготовлення ІМС. Позитивні фоторезисти ( ФП ) під дією опромінювання розкладаються і легко усуваються з підкладки, а захисні властивості має неопромінений фоторезист.
Для опромінення фоторезистів використовують ультрафіолетові джерела світла. Фотохімічні реакції в фоторезистах стимулюються поглинанням квантів опромінюючого світла. Фотолітографія являється основним способом перенесення рисунка мікросхеми на напівпровідникову пластину.
Роздільна здатність фоторезиста визначається максимальною кількістю ліній однакової ширини, розділених проміжками, рівними ширині лінії, яку можна отримати в фоторизистивному шарі на довжині 1 мм ( іноді 1 см ).
Поряд з роздільною здатністю слід розрізняти т.з. виділяючу здатність. Виділяюча здатність визначається мінімальною шириною окремої лінії, яку можна відтворити з допомогою того чи іншого фоторезисту.
Роздільну та виділяючу здатність визначають з допомогою випробувальної міри. Цією мірою можна контролювати вказані параметри фотокамери, фотошаблонів, фоторезиста і процесу фотолітографії.
На практиці широко застосовують фоторезисти таких марок: ФП-307, ФП-309, ФП-330, ФП-383, ФП-РН-7, ФП-617 і інші, які забезпечують; формування ліній, шириною 1 - 2 мкм при товщині фоторезиста 0,3-0,4 мкм.
Негативні фоторезисти мають дещо меншу роздільну здатність ( до 200 ліній/мм ), яка забезпечує відтворення ліній шириною більше 2,5 мкм.
При виборі матеріалу фоторезисту оцінюють світлочутливість S , роздільну здатність, стійкість до агресивних середовищ та вартість.
, де
Е
– освітленість;
час
експонування.
Одночасно треба знати, які травники і проявники будуть застосовуватися при виготовленні даної мікросхеми. Фоторезистивна маска, сформована на основі позитивного чи негативного фоторерезиста, повинна бути стійкою до цих агресивних середовищ і мати хороші захисні властивості, щоб не була порушена геометрія елементів.
Для створення фоторезистивної захисної маски використовуються фотошаблони, виготовлення яких проводиться із застосуванням фотооригіналів. Розглянемо послідовність операцій фотолітографічного процесу при формуванні маски з окису кремнію необхідної конфігурації.
Підкладка з нанесеною суцільною окисною плівкою покривається фоторезистом. Після засвічування фоторезиста через фотошаблон та проявлення формується фоторезистивна маска ( рис.1 ).
Рисунок 1 - Процес утворення рельєфу у поверхневому шарі пластин за допомогою позитивного (І) та негативного (ІІ) фоторезистів на стадіях експонування (а), після проявлення фоторезисту (б), та після травлення поверхневого шару пластини і вилучення частини фоторезисту (в):
ультрафіолетове випромінювання;
фотошаблон;
шар фоторезисту;
поверхневий шар на пластині;
пластина.
6
Після нанесення фоторезисту усувається розчинник, який заважає ефективному проходженню фотохімічних реакцій. Для отримання твердої плівки і забезпечення зчеплення її з поверхнею підкладки чи плівки, на яку вона наноситься, проводять висушування.
Засвічування фоторезисту проводиться через фотошаблони, рисунок яких повинен бути точно суміщений з рисунком на підкладці, раніше нанесеному в процесі попередньої фотолітографії. Фотошаблон може знаходитися безпосередньо на підкладці з фоторезистом при контактному експонуванні або проектуватися на поверхню фоторезиста при проекційному експонуванні.
Проекційна фотолітографія відрізняється від контактної фотолітографії технікою суміщення і експонування і полягає в проектуванні зображення фотошаблону на пластину, покриту фоторезистом, з допомогою системи лінз з високою роздільною здатністю. Проекційна фотолітографія дозволяє збільшувати або зменшувати зображення в широких границях.
Для експонування використовують джерела ультрафіолетового, випромінення, наприклад, ртутно-кварцеві лампи. Час експозиції підбирають на контрольних зразках в залежності від типу фоторезистів і джерел випромінювання.
Після експонування проводять проявлення, усуваючи експонований позитивний і неекспонований негативний фоторезист. При проявленні неекспонованих негативних фоторезистів використовують толуол, трихлоретилен, діоксан та інші розчинники, а експонований позитивний фоторезист усувається водними лужними розчинами ( 0,3-0,5% розчин їдкого калію, 1-2% розчин тринатрійфосфату ) чи органічними лугами. Проявлення здійснюється зануренням у розчин або витримкою у парах проявника. Після проявлення зображення підкладку старанно промивають деіонізованою водою і проводять сушіння.
При необхідності усунення фоторезистивної маски застосовують хімічну, термічну ( в атмосфері кисню ) чи плазмохімічну деструкцію.
2.8.2 Х- променева літографія
Відоме широке
застосування в мікроелектроніці
X-променевої
( рентгенівської ) літографії, яка
базується на зміні хімічної
активності опроміненого резистора,
чутливого до цих променів. Основна
відмінність Х - променевої літографії
полягає у використанні
випромінення
з довжиною
хвилі (
=
2-50
),
що значно
менше
в порівнянні з ультрафіолетовими
джерелами.
Шаблони для проведення літографії повинні бути тонкими, прозорими для Х - випромінювання, зі стабільними розмірами при зміні температури, дії розтягу і вологи. Для виготовлення шаблонів використовують органічні речовини - поліефір, поліамід, а також неорганічні - окиси алюмінію і кремнію, двоокис кремнію, карбід кремнію, сплави кремнію з металами. Поглиначем, в основному, служить шар золота, товщиною близько 0,5 мкм.
Роздільна здатність Х-променевої літографії визначається якістю резистів, які використовуються. Як правило, вони є плівками полімерів, товщиною 0,3-2,0 мкм, які до отримання рисунку наносяться на підкладку з допомогою центрифуги.
В Х-променевій літографії, як і у фотолітографії, застосовують позитивні і негативні резисти. Позитивні резисти руйнуються під дією Х-променів, а негативні полімеризуються. Х-промені поглинаються цілими молекулами і при цьому проходить вибивання електронів з внутрішніх оболонок атомів резиста. Вивільнені електрони взаємодіють з полімером, сприяючи хімічному руйнуванню чи зшиванню молекул.
Основними вимогами, які висуваються до резистів, є висока чутливість, виділяюча здатність (не менше 0,2-0,3 мкм) і низька мікродефектність, стійкість в процесах хімічного, електрохімічного, плазмохімічного і фізичного травлення, електрохімічного і вакуумного осадження металів, іонної імплантації; достатня адгезія до підкладки, температурна стабільність зображення і однорідність товщини краю проявленого рисунка.