
- •Логічні ел-ти ттл/ттлш: базовий логічний елт. Аналіз амплітудно-передаточної (амплітудної або статичної) хар-ки. Статичні та динамічні параметри.
- •1.2 Логічни ел-ти з трьома станами виходу. Принцип дії. Впорядкування роботи декількох ел-тів на одну спільну лінію інтерфейсу (магістральні інтерфейси)
- •1.3 Логічн ел-ти моп/кмоп: базовий лог ел-т. Аналіз амплітудно-передаточної (амплітудної або статичної) хар-ки. Статичні та динамічні параметри.
- •1.4 Тригери: класифікація та коротка характеристика різних типів тригерів. Особливості схемотехнічної реалізації та функціонування.
- •1.5 Регістри: призначення та класифікація. Паралельні та послідовні регістри. Особливості схемотехнічної реалізації та функціонування.
- •1.6 Лічильники: призначення та класифікація. Асинхронні лічильники. Особливості схемотехнічної реалізації та функціонування.
- •1.7. Синхронні лічильники: особливості схемотехнічної реалізації та функціонування.
- •1.8. Дешифратори: визначення, класифікація, способи побудови та функціонування. Линейный или одноступенчатый дешифратор.
- •1.9 Шифратори. Визначення, принципи побудови та особливості функціонування. Клавіатурні, пріоритетні шифратори, кодоперетворювачі.
- •1.10. Мультиплексори: визначення, принципи побудови та функціонування.
- •1.11. Демультиплексори: визначення, принципи побудови та функціонування.
- •1.12. Суматори комбінаційного типу: призначення, класифікація та принципи побудови.
- •1.13. Накопичуючі суматори та особливості їхнього функціонування.
- •1.14 Моделювання аналогових та цифрових схем за допомогою пакетів ewb і micro-cap: послідовність дій при моделюванні. Одержання та оформлення результатів.
- •Мультиметр
- •Генератор слов
- •Логический анализатор
- •Логический преобразователь
- •Осциллограф.
- •Разработка схем цифровых устройств
- •5.1. Вывод элементов схем на рабочую поверхность
- •Монтаж схем
- •1.15 Особливості та принципи побудови пристроїв з використанням «жорсткої» та «програмованої» логіки.
- •1.16 Основні функції алгебри логіки та логічні елементи для їх реалізації. Закони алгебри логіки.
- •1.17 Синтез логічних схем в базисах (і, або, ні), і-ні, або-ні.
- •1. Абстрактный синтез
- •2. Схемный синтез
- •1.18 Типи даних та структури команд в мп intel (на прикладi 486)
- •1.19. Архітектура системного інтерфейсу сучасних пк. Призначення компонент. Режими передачі інформації по системним шинам.
- •1.20. Розподілення системних ресурсів між компонентами пк. Технологія PnP та її реалізація в шинах pci та isa/eisa.
- •1.21. Засоби кешування мп. Призначення та характеристики. Типи кеш-пам'яті. Режими роботи при читанні/записуванні інформації.
- •1.22. Призначення та організація системної пам'яті. Фізична організація мікросхем пзп, статичного та динамічного озп. Типи динамічної пам’яті (fpm, edo, bedo, sdram).
- •1.23. Архітектура та принцип роботи годинника реального часу rtc та cmos пам'яті. Можливості програмування.
- •1.24. Архітектура системного таймера та призначення каналів таймера. Режими роботи каналів таймера. Можливості програмування.
- •1.25. Архітектура та організація підсистеми dma (кпдп) в пк. Керуюча інформація та програмування.
- •1.26. Організація переривань в пк, пріоритети при обробці переривань. Режими роботи та програмування.
- •1.27. Архітектура та принцип роботи підсистеми клавіатури. Призначення компонент. Та можливості програмування.
- •1.28. Архітектура відеосистеми пк. Управління відеосистемою. Режими. Структура відеопам'яті.
- •1.29. Логічна організація дискових накопичувачів зовнішньої пам'яті. Основні області (boot, fat, root, data area).
- •1.30. Архітектура та управління контролером нжмд. Структура команд.
- •1.31. Архітектура та управління com-портом. Призначення регістрів.
- •1.32. Архітектура та управління lpt – портом в режимах ecp epp.
- •1.33. Архітектура scsi шини.
- •1.34. Архітектура usb шини.
- •2.1 Методи відокремлення каналів у багатоканальних системах передачі даних.
- •2.2 Перетворення, кодування, модуляція. Призначення цих процесів при передаванні даних. Теорема котєльнікова (найквіста).
- •2.3 Модуляція. Різновиди модуляції. Швидкість маніпуляції.
- •2.4 Кількість інформації. Ентропія. Надмірність.
- •2.5 Класифікація завад. Властивості флуктуаційних завад.
- •2.6 Амплітудна маніпуляція. Модулятор та детектор. Спектр сигналу та потрібна смуга перепускання каналу.
- •2.7 Частотна маніпуляція. Модулятор, детектор.
- •Фазова маніпуляція. Спектр сигналу та потрібна смуга перепускання каналу. Відносна фазова маніпуляція та детектування.
- •2.9. Різновиди фазової маніпуляції: двфм, твфм, кам.
- •2.11. Класифікація похибкостійких кодів. Вирази для розрахунку віроємності невиявленої помилки для кодів із сталою вагою та для кодів з контролем за паритетом
- •2.12. Первичные коды и способы расширения кодировочной таблицы. Esc-последовательности принтеров.
- •2.13. Причины использования модуляции при передаче данных. Разновидности модуляции и необходимые полосы пропускания линий связи.
- •2.14. Геометрическая интерпретация сигналов и помех. Идеальный приёмник котельникова и другие варианты построения приёмников двоичных сигналов.
- •2.15. Синхронизация в аппаратуре передачи данных и в устройствах считывания магнитных записей, способы кодирования, которые повышают надёжность синхронизации битов.
- •Параллельный метод
- •Последовательный метод
- •2.16. Модемы как периферийные устройства. Система команд хейза. Модемы серии mnp. Особенности модемов классов mnp-5,7,10. Команды модема.
- •2.17. Методы магнитного записывания информации и их применение.
- •2.18. Частотный и модифицированный частотный методы записи информации. Формат сектора на гибком диске. Способы позиционирования головок в дисковых устройствах магнитного записывания информации.
- •2.19. Елементи формату сектору, що забезпечують бітову та байтову синхронізацію під час зчитування інформації з гнучких дисків.
- •2.22. Cтандарт багаторівневого керування мережею (модель взаімодії відкритих систем – open system interconnection, osi). Поняття протоколу, інтерфейсу, стеку протоколів.
- •2.24. Протоколи канального рівня: асинхронні, синхронні (символьно-орієнтовані, біт-орієнтовані). Протоколи з встановленням з’єднання та без встановлення.
- •Синхронные символьно-ориентированные и бит-ориентированные протоколы
- •Передача с установлением соединения и без установления соединения
- •2.25 Локальна мережа ethernet. Топології, стандарти, доступ до мережі, структура кадру, розрахунок продуктивності, колізії, домен колізій та організація роботи мережі.
- •Максимальная производительность сети Ethernet
- •Форматы кадров технологии Ethernet
- •Глобальные связи на основе сетей с коммутацией каналов
- •Isdn - сети с интегральными услугами
- •2.28.Протокол ip та його функції. Структура ip-пакету та його параметри. Маршрутизація в ip-мережах. Фрагментація ip–пакетів. Зборка фрагментів.
- •Источники и типы записей в таблице маршрутизации:
- •Фрагментация ip-пакетов
- •2.29. Тенденції розвитку мікропроцесорної техніки. Структура та режими функціонування сучасних мікропроцесорів.
- •2.30. На базі існуючих технічних рішень провести розробку структурної схеми мікропроцесора.
- •2.31. Сегментація пам’яті в захищеному режимі. Розробка дескрипторів сегментів. Формування лінійної адреси при звертанні до пам’яті.
- •2.32. Обробка переривань в захищеному режимі. Види виключень. Формування дескриптивної таблиці переривань.
- •5.9. Приклад обробки пеpеpивань в захищеному режимi
- •5.9.1. Опис програми p_int
- •2. 34 Захист пам’яті. Рівні привілеїв. Особливості захисту сегментів даних, стеку, коду та пристроїв введення/виведення.
- •2.35. Апаратні засоби підтримки багатозадачної роботи мікропроцесора. Структура аблиці стану задач. Алгоритми та механізми переключення задач.
- •2.36.Алгоритми та механізми переключення задач
- •2.37. Сторінкова організація пам’яті. Розробка покажчиків таблиць та сторінок формування фізичної адреси для 4к-, 2м- і 4м-байтних сторінок.
- •3.1. Засоби захисту носіїв інформації. Записування за межами поля форматування. Зміна довжини сектора. Чергування секторів.
- •3.5. Процеси. Контекст процесу. Стани процесів та переходи між ними. Системні виклики для забезпечення життєвого циклу процесу.
- •3.6. Керування пам’яттю. Основні задачі. Моделі пам’яті. Системні виклики для роботи з пам’яттю.
- •3.7. Операційні системи. Склад ос. Вимоги до сучасних ос. Архітектурні напрямки побудови ос.
- •Монолитные системы
- •Многоуровневые системы
- •Модель клиент-сервер и микроядра
- •3.8. Монопольні ресурси. Проблема тупиків. Дисципліни розподілу ресурсів. Пошук тупиків та їх знищення.
- •3.9. Паралельне виконання процесів. Формулювання задачі «виробники-споживачі» та методи її вирішення.
- •3.10. Засоби взаємодії процесів. Порівняльна характеристика базових механізмів ipc.
- •3. 12 Субд. Основні функції. Види субд.
- •3.13 Реляційні бази даних. Основні поняття, властивості відношень, модель даних, реляційні операції і обчислення. Базовые понятия реляционных баз данных.
- •1. Тип данных
- •2. Домен
- •3. Схема отношения, схема базы данных
- •4. Кортеж, отношение
- •1.Отсутствие кортежей-дубликатов
- •2. Отсутствие упорядоченности кортежей
- •3. Отсутствие упорядоченности атрибутов
- •3.14.Колірні простори rgb та cmyk. Сфера застосування та та причини їх розходження. Одержання кольорів одного простору через значення кольорів іншого.
- •3.16 Провести порівняння технологій взаємодії процесів у локальній мережі. Поштові скриньки. Іменовані канали. Вилучений виклик процедур. Гнізда.
- •3.17 Провести порівняння методів побудови багаторівневих програмних засобів. Динамічні бібліотеки. Com і activex. Провайдери. Служби. Драйвера.
- •3.18 Загальні вимоги і архітектури інтерфейсу користувача . Можливості, переваги і недоліки діалогових, однодокументних і багатодокументних прикладень.
- •3.19 Типи даних та структури команд в мп Intel.
- •3.20 Організація переривань в пк, пріоритети при обробці переривань. Режими роботи та програмування.
- •3.21 Архітектура відеосистеми пк. Управління відеосистемою.
- •3.22 Режими відеосистеми. Структура відеопам'яті.
- •3.23 Логічна організація дискових накопичувачів зовнішньої пам'яті. Основні області (boot, fat, root, data area).
- •3.24 Двійкова логіка. Булеві функції однієї та двох змінних. Кількість булевих функцій n-змінних. Суперпозиція булевих функцій.
- •3.25. Тестова діагностика мереж пк. Утиліта ping: організація роботи, типи повідомлень. Поясніть можливий приклад роботи утиліти.
- •Технические характеристики системной платы
- •3.27. Відеосистема пк. Основні експлуатаційні характеристики. Отримання інформації про відеосистему пк та результатів тестування з допомогою програми класу checkit. Пояснити можливі результати.
- •Возможные тесты видеосистемы:
- •3.28. Реалізація анімації зображення в web-сторінках з використанням додаткових графічних файлів і без них (тільки текстом html-файлу).
- •3.29. Колір – як засіб керування психікою і поведінкою людини. Реалізація колірної гармонії у графічному зображенні.
- •Понятие цветовой гармонии :
- •3.30. Спектральна характеристика людського ока і причина використання rgb системи в моніторах. Технічні і психофізіологічні обмеження відтворення кольору.
- •3.31 Реляційні бази даних. Транзакції та цілісність баз даних. Ізольованість користувачів. Журнал змін. Транзакции и целостность баз данных
- •3.32 Мова запитів sql. Команда select і структура запитів на вибірку.
- •3.33 Мова запитів sql. Робота з записами і таблицями. Додавання, видалення, модифікація.
- •3.34. Архітектури побудови систем клієнт-сервер. Варіанти побудови серверних прикладень. Варіанти побудови клієнтських прикладень.
- •3.35. Драйвери. Призначення, структура. Механізм роботи драйвера. Приклади драйверів.
- •3.36. Керування процесорним часом. Модель планувальника та диспетчера процесорного часу. Пріоритети процесів.
- •3.37. Керування процесорним часом. Витісняючі та невитісняючі дисципліни планування процесорного часу.
2.24. Протоколи канального рівня: асинхронні, синхронні (символьно-орієнтовані, біт-орієнтовані). Протоколи з встановленням з’єднання та без встановлення.
Канальный уровень обеспечивает передачу пакетов данных, поступающих от протоколов верхних уровней, узлу назначения, адрес которого также указывает протокол верхнего уровня. Протоколы канального уровня оформляют переданные им пакеты в кадры собственного формата, помещая указанный адрес назначения в одно из полей такого кадра, а также сопровождая кадр контрольной суммой. Протокол канального уровня обычно работает в пределах одной сети, которая, как правило, входит в более крупную составную сеть, объединяемую протоколами сетевого уровня. Адреса, с которыми работает протокол канального уровня, используются для доставки кадров только в пределах этой сети, а для перемещения пакетов из сети в сеть применяются уже адреса следующего, сетевого уровня.
Наиболее существенными характеристиками метода передачи, а значит, и протокола, работающего на канальном уровне, являются следующие:
асинхронный/синхронный;
символьно-ориентированный/бит-ориентированный;
с предварительным установлением соединения/дейтаграммный;
с обнаружением искаженных данных/без обнаружения;
с обнаружением потерянных данных/без обнаружения;
с восстановлением искаженных и потерянных данных/без восстановления;
с поддержкой динамической компрессии данных/без поддержки.
Асинхронные протоколы
Асинхронные протоколы предоставляют наиболее старый способ связи. Эти протоколы оперируют не с кадрами, а с отдельными символами, которые представлены байтами со старт-стоповыми символами.
Единицей передаваемых данных в асинхронных протоколах является не кадр данных, а отдельный символ, который чаще всего представлен одним байтом Некоторые символы имеют управляюший характер, например символ <CR> предписывает телетайпу или дисплею выполнить возврат каретки на начало строки. В этих протоколах существуют управляющие последовательности, обычно начинающиеся с символа < ЕSC>.
Описанный режим работы называется асинхронным, или старт-стопным. В асинхронном режиме каждый байт данных сопровождается специальными сигналами «старт» и «стоп».
Синхронные символьно-ориентированные и бит-ориентированные протоколы
В синхронных протоколах между пересылаемыми символами (байтами) нет стартовых и стоповых сигналов, поэтому отдельные символы в этих протоколах пересылать нельзя. Все обмены данными осуществляются кадрами, которые имеют в общем случае заголовок, поле данных и концевик (рис. 5.10). Все биты кадра передаются непрерывным синхронным потоком, что значительно ускоряет передачу данных.
Р
ис.
5.10. Кадры синхронных протоколов
Так как байты в этих протоколах не отделяются друг от друга служебными сигналами, то одной из первых задач приемника является распознавание граница байтоп. Затем приемник должен найти начало и конец кадра, а также определить границы каждого поля кадра — адреса назначения, адреса источника, других служебных полей заголовка, поля данных и контрольной суммы, если она имеется. Большинство протоколов допускает использование в кадре поля данных переменной длины.
Обычно протоколы определяют максимальное значение, которое может иметь длина поля данных. Эта величина называется максимальной единицей передачи данных (Maximum Transfer Unit, MTU).Синхронные протоколы канального уровня бывают двух типов: символьно-ориентированные (байт-ориентированные) и бит-ориентированные. Для обоих xaрактерны одни и те же методы синхронизации битов. Главное различие между ними заключается в методе синхронизации символов и кадров.
Символьно-ориентированные протоколы используются в основном для передачи блоков отображаемых символов, например текстовых файлов. Так как при синхронной передаче нет стоповых и стартовых битов, для синхронизации символов необходим другой метод. Синхронизация достигается за счет того, что передатчик добавляет два или более управляющих символа, называемых символами SYN, перед каждым блоком символов. Символы SYN выполняют две функции: во-первых, они обеспечивают приемнику битовую синхронизацию, во-вторых, как только битовая синхронизация достигается, они позволяют приемнику начать распознавание границ символов SYN. После того как приемник начал отделять один символ от другого, можно задавать границы начала кадра с помощью другого специального символа. Обычно в символьных протоколах для этих целей используется символ STX . Другой символ отмечает окончание кадра - ЕТХ. Наиболее популярным протоколом такого типа был протокол BSC компании IBM. Он работал в двух режимах — непрозрачном, в котором некоторые специальные символы внутри кадра запрещались, и прозрачном, в котором разрешалась передачи внутри кадра любых символов, в том числе и ЕТХ. Прозрачность достигалась за счет того, что перед управляющими символами STX и ЕТХ всегда вставлялся символ DLE (Data Link Escape). Такая процедура называется стаффингом символов.
Бит-ориентированные протоколы
Потребность в паре символов в начале и конце каждого кадра вместе с дополнительными символами DLE означает, что символьно-ориентированная передача не эффективна для передачи двоичных данных, так как приходится в поле данных кадра добавлять достаточно много избыточных данных. Так что этот метод допустим только с определенным типом кодировки, даже если кадр содержит чисто двоичные данные. Чтобы преодолеть эти проблемы, сегодня почти всегда используется более универсальный метод, называемый бит-ориентированной передачей. Этот метод сейчас применяется при передаче как двоичных, так и символьных данных. На рис. 5.11 показаны три различные схемы бит-ориентированной передачи. Они отличаются способом обозначения начала и конца каждoгo кадра.