
- •1.Архітектура сапр.
- •2.Характеристика мультипроцесорних комп’ютерних систем.
- •3.Топологія локальних мереж. Види і коротка характеристика
- •1.Реляційна модель даних. Загальна характеристика. Цілісність сутності і посилань.
- •2.Алгоритм шифрування даних гост 28147-89. Основні характеристики алгоритму. Основні режими роботи алгоритму(призначення, схема роботи, переваги та недоліки кожного режиму)
- •3.Схемотехніка зовнішніх інтерфейсів еом. Шини і2с, послідовний паралельний порт, шина usb.
- •4.Мережні обладнання: комутатор, концентратор, шлюз, міст, маршрутизатор. Функції та стисла характеристика).
- •5 .Характеристика та структура матричних процесорів.
- •1 .Дешифратори, типи, побудова, характеристики
- •3.Ієрархічні системи. Ієрархічні структури даних. Маніпулювання даними. Обмеження цілісності.
- •4.Модель мультипроцесорних комп’ютерних систем із загальною пам’яттю.
- •1 .Двійкові однорозрядні суматори.
- •2.Схема Ель-Гемаля. Процедура шифрування. Процедура розшифрування.
- •3.Семантичне моделювання даних,er – діаграми. Семантичні моделі даних.
- •4.Розімкнена мережева модель систем оперативної обробки інформації.
- •5.Технологія бездротової передачі даних Wi-Fi.
- •2.Характеристика мультипроцесорних комп’ютерних систем з перехресною комутацією.
- •3.Високовиробничі технічні засоби сапр та їх комплексування.
- •4.Проектування реляційних баз даних. Проектування реляційних бд із використанням нормалізації.
- •1.Двійково – десяткові суматори.
- •4.Синтез систем оперативної обробки інформації із заданою вартістю.
- •5.Технологія 100vg-AnyLan (середовище передачі інформації в мережі, основні технічні характеристики, апаратура, топологія, метод доступу).
- •2.Характеристика конвеєрного процесора для векторної обробки інформації.
- •4.Загальні поняття реляційного підходу до організації бд. Основні концепції і терміни.
- •1.Однокристальні восьмирозрядні мікропроцесори.
- •3.Фундаментальні властивості відношень. Відсутність кортежів-дублікатів. …
- •2.Замкнута мережева модель систем оперативної обробки інформації з обмеженим числом заявок.
- •3.Основні функції субд. Управління буферами оперативної пам’яті. Управління трансакціями.
- •4.Абстрактні моделі захисту інформації: Сазерлендская модель. Модель Кларка-Вільсона.
- •4 .Синтез соо інформації із заданою вартістю.
- •1.Кабельні системи: коаксіальний кабель, «кручена пара», оптоволоконний кабель.
- •2.Побудова мережених моделей систем оперативної обробки інформації.
- •3.Робочі станції – сервери для сапр.
- •4.Пристрої цифрового керування. Керуючі автомати зі схемною логікою.
- •1.Тупики, розпізнавання і руйнація. Метод тимчасових міток. Журналізація…
- •2.Технологія fddi (середовище передачі інформації, основні технічні характеристики, метод доступу).
- •5.Схеми порівняння і контролю.
- •1.Комбінаційні функціональні вузли комп’ютерної схемотехніки. Мультиплексори, демультиплексори.
- •2.Склад, організація та режими роботи технічних засобів сапр.
- •5.Технологія Gigabit Ethernet (середовище передачі інформації, основні технічні.Характеристики).
- •1.Технологія Token-Ring (апаратура, топологія, основні технічні характеристики, метод доступу).
- •2.Характеристика асоціативних комп’ютерних систем.
- •3.Криптосистема шифрування даних rsa. Процедура шифрування. Процедура розшифрування.
- •5.Паралельні багаторозрядні суматори.
- •3.Асиметричні криптосистеми, концепція криптосистеми з відкритим ключом: недоліки симетричних криптосистем, необхідні умови для ака, характерні особливості ака, узагальнена схема акс,…
- •5.Технологія Arcnet (апаратура, топологія, основні технічні характеристики, метод доступу.
- •3.Мережні обладнання: комутатор, концентратор, шлюз, міст, маршрутизатор.
- •4 .Характ-ка процесорної матриці з локальною пам’яттю.
- •1.Алгоритми електронного цифрового підпису. Поняття аутентифікації. Призначення ецп…
- •2.Схеми для виконання логічних мікрооперацій.
- •3.Характеристика мультипроцесорних комп’ютерних систем з багатовходовими озп.
- •4.Локальне периферійне обладнання сапр.
- •1.Архітектура сапр
- •2.Технологія 100vg-AnyLan .
- •3.Характеристика функціонально розподілених комп’ютерних систем.
- •1.Семантичне моделювання даних,er – діаграми. Семантичні моделі даних.
- •2.Постійна пам’ять комп’ютерів. Мікросхеми пам’яті на ліз мон-транзисторах.
- •3.Характеристика однорідних комп’ютерних систем.
- •1.Абстрактні моделі захисту інформації: модель Біба, модель Гогена-Мезигера.
- •4.Модель мультипроцесорних комп’ютерних систем із загальною пам’яттю.
- •5.Схемотехніка зовнішніх інтерфейсів еом. Шини і2с, послідовний паралельний порт, шина usb.
- •1.Керування транзакціями, серіалізація. Транзакція і цілісність баз даних. Ізольованість користувачів.
- •2 .Дешифратори, типи, побудова, характеристики.
- •2.Технологія Gigabit Ethernet (середовище передачі інформації, основні технічні.Характеристики.
- •1.Комбінаційні функціональні вузли комп’ютерної схемотехніки.Мультиплексори, демультиплексори.
- •3.Високовиробничі технічні засоби сапр та їх комплексування.
- •1.Однокристальні восьмирозрядні мікропроцесори.
- •2.Загальні поняття реляційного підходу до організації бд. Основні концепції і терміни.
- •4.Фундаментальні властивості відношень. Відсутність кортежів-дублікатів.
- •1.Характеристика мультипроцесорних комп’ютерних систем з перехресною комутацією.
- •2.Проектування бд. Створення бд.
- •3.Призначення пакетів і їх структура.
- •4.Єдинонаправленні функції. Визначення єдинонаправлених функцій.
- •5.Двійкові однорозрядні суматори.
- •2.Технологія fddi (середовище передачі інформації, основні технічні характеристики, метод доступу).
- •3.Проектування реляційних баз даних. Проектування реляційних бд із використанням нормалізації.
- •4 .Характеристика та структура матричних процесорів.
- •5.Статичні запам’ятовуючі пристрої.
4 .Синтез соо інформації із заданою вартістю.
С интез СОО с зад.стоимостью сводиться к задачи оптимального распределения стоимости устройств, т.е. их быстродействия при ограничении на суммарную стоимость устройств решается следующим образом. Модель СОО - разомкнутая стохастическая сеть. ai,.,an –коэффициенты передач (количество обращений к соответствующим устройствам при решении одной задачи).Допущения:поток простейший длительности обслуживания заявок в каждой сети распределены по экспоненциальному закону. Среднее время пребывания задачи в сети, состоящей из п систем: Стоимость системы: Таким образом, минимум среднего времени' пребывания задач ( среднего времени ответа на запрос пользователя ) для СОО стоимостью S достигается при распределении быстродействий vi в соответствии с (рис.2). Такое распределение быстродействий называется оптимальным для СОО заданной стоимости. Количество типовых устройств i-ro типа определяется по (рис.3).
5.Адресація пакетів. Каждый абонент (узел) локальной сети должен иметь свой уникальный адрес (он же идентификатор, МАС-адрес), чтобы ему можно было адресовать пакеты. Существуют две основные системы присвоения адресов абонентам сети. Первая система сводится к тому, что при установке сети каждому абоненту присваивается свой адрес. При этом требуемое количество разрядов адреса определяется из простого уравнения: 2^n>Nmax, где п — количество разрядов адреса, a Nmax - максимально возможное количество абонентов в сети. Например, 8 разрядов адреса достаточно для сети из 255 абонентов. Достоинства данного подхода -простота и малый объем служебной информации в пакете, а также простота аппаратуры адаптера, распознающей адрес пакета. Недостаток - трудоемкость задания адресов и возможность ошибки (двум абонентам сети может быть присвоен один и тот же адрес). Второй подход к адресации был разработан международной организацией IEEE, занимающейся стандартизацией сетей. Именно он используется в большинстве сетей и рекомендован для всех новых разработок. Идея состоит в том, чтобы присваивать уникальный сетевой адрес каждому адаптеру сети еще на этапе его изготовления. Был выбран 48-битный формат адреса, что соответствует примерно 280 триллионам различных адресов. Чтобы распределить возможные диапазоны адресов между многочисленными изготовителями сетевых адаптеров. 46 разрядов - универсально управляемый адрес или IEEE-адрес. Старший бит I/G (Individual/Group) определяет индивидуальный это адрес или групповой. Второй управляющий бит U/L (Universal/Local) называется флажком универсального/местного управления и определяет, как был присвоен адрес данному сетевому адаптеру. Для широковещательной передачи используется специально выделенный сетевой адрес, все 48 битов которого установлены в единицу. Его принимают все абоненты сети независимо от их индивидуальных и групповых адресов.
Билет № 13 КПРПС
1.Кабельні системи: коаксіальний кабель, «кручена пара», оптоволоконний кабель.
Коаксиальный кабель, также известный как коаксиал (от англ. coaxial), — электрический кабель, состоящий из расположенных соосно центрального проводника и экрана и служащий для передачи высокочастотных сигналов. RG-8 и RG-11 — «Толстый Ethernet», 50 Ом. Стандарт 10BASE5; RG-58 — «Тонкий Ethernet», 50 Ом. Стандарт 10BASE2. Тонкий Ethernet. Был наиболее распространённым кабелем для построения локальных сетей. Диаметр примерно 6 мм и значительная гибкость позволяли ему быть проложенным практически в любых местах. Кабели соединялись друг с другом и с сетевой платой в компьютере при помощи Т-коннектора BNC. Между собой кабели могли соединяться с помощью I-коннектора BNC. На обоих концах сегмента должны быть установлены терминаторы. Поддерживает передачу данных до 10 Мбит/с на расстояние до 185 м. Толстый Ethernet. Более толстый, по сравнению с предыдущим, кабель — около 12 мм в диаметре, имел более толстый центральный проводник. Плохо гнулся и имел значительную стоимость. Кроме того, при присоединении к компьютеру были некоторые сложности. За счёт более толстого проводника передачу данных можно было осуществлять на расстояние до 500 м со скоростью 10 Мбит/с. Витая пара — вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой. Свивание проводников производится с целью повышения степени связи между собой проводников одной пары (электромагнитная помеха одинаково влияет на оба провода пары) и последующего уменьшения электромагнитных помех от внешних источников, а также взаимных наводок при передаче дифференциальных сигналов. Для снижения связи отдельных пар кабеля (периодического сближения проводников различных пар) в кабелях UTP категории 5 и выше провода пары свиваются с различным шагом. Экранирование обеспечивает лучшую защиту от электромагнитных наводок как внешних, так и внутренних, и т. д. Экран по всей длине соединен с неизолированным дренажным проводом, который объединяет экран в случае разделения на секции при излишнем изгибе или растяжении кабеля. В зависимости от структуры проводников — кабель применяется одно- и многожильный. В первом случае каждый провод состоит из одной медной жилы, а во втором — из нескольких. Одножильный кабель не предполагает прямых контактов с подключаемой периферией. В свою очередь многожильный кабель плохо переносит «врезание» в разъёмы панелей розеток (тонкие жилы разрезаются), но замечательно ведет себя при изгибах и скручивании. Поэтому многожильный кабель используют в основном для изготовления патчкордов (англ. patchcord), соединяющих периферию с розетками. Оптическое волокно — нить из оптически прозрачного материала (стекло, пластик), используемая для переноса света внутри себя посредством полного внутреннего отражения. Оптическое волокно имеет круглое сечение и состоит из двух частей — сердцевины и оболочки. Оптические волокна могут быть одномодовыми и многомодовыми. Оптические волокна, используемые в телекоммуникациях, имеют диаметр 125±1 микрон.