- •1.Строение электронных оболочек атома. Квантовые числа, s-, p-, d-, f- состояния электронов. Принцип Паули. Правило Гунда. Электронные формулы и энергетические ячейки.
- •5) Порядок заполнения электронных слоев.
- •7) Ионная связь. Механизм возникновения, валентность элементов в ионных соединениях.
- •8.Ковалентная связь.
- •9) Направленность ковалентной связи. Строение молекул h2, Cl2, hCl, h2o, h2s, nh3, ch4, bCl3, BeCl2. Гибридизация электронных облаков, s и p связь. Строение молекул этилена, ацетилена.
- •10) Полярная связь. Π –полярная молекула.
- •13) Виды межмолекулярного взаимодействия. Потенциал Леннарда-Джонса.
- •14) Основные агрегатные состояния вещества. Характеристика газообразного, жидкого и твердого состояний. Дальний и ближний порядок.
- •16) Кристалл. Монокристалл. Поликристаллическое тело. Свойства веществ в кристаллическом состоянии. Анизотропия. Закон постоянства междугранных углов.
- •17).Классификация кристаллов.
- •19) Плотность упаковки частиц в кристаллах. Плотнейшие упаковки. Тетраэдрические и октаэдрические междоузлия.
- •20) Типы кристаллических решеток по видам связи. Ионные, атомные и молекулярные решетки. Металлические решетки.
- •21) Основные виды кубических структур.
- •22) Полиморфизм, аллотропия, энантиоморфизм, Изоморфизм.
- •23) Реальные кристаллы. Точечные и протяженные дефекты структуры. Влияние дефектов структуры на свойства твердых тел.
- •24) Стехиометрические законы химии и особенности их применения в кристаллах.
- •25) Предмет и задачи химической термодинамики. Система, фаза, компонент, параметры. Функции состояния: внутренняя энергия и энтальпия.
- •27) I начало термодинамики. Истинная и средняя теплоемкость. Соотношение между Cp и c для идеального газа.
- •35) Изотерма химической реакции. Стандартное изменение свободной энергии. Изобара и изохора.
- •36) Фазовые превращения. Уравнение Клапейрона-Клазиуса. Теплота фазового превращения.
- •37) Тепловая теорема Нернста. Постулат Планка. Расчёт абсолютного значения энтропии.
- •55) Явление катализа. Катализаторы и ингибиторы. Механизм гомогенного и гетерогенного катализа.
- •56) Понятие "р-р." Разбавленные, концентрированные, насыщенные, пересыщенные растворы. Способы выражения концентрации растворов.
- •57).Физические и Химические теории р-ров. Сольватация. Теплота растворения. Растворение тв. Тел в жидкости. Ур-е Шредера. Растворимость жидкостей в жидкостях.
- •58) Растворимость газов в жидкостях. Закон Генри и Дальтона. Ур-е Сивертса. Закон распределения. Практическое применение закона распределения.
- •60) Первый и второй законы Рауля. Определение молекулярных масс различных веществ (эбулио и криоскопия).
- •62). Слабые электролиты. Степень диссоциации, определение ее через электропроводность. Константа диссоциации. Связь константы диссоциации и степени диссоциации (закон распределения Оствальда)
- •63) Сильные электролиты. Ионные атмосферы. Кажущаяся степень диссоциации. Активность и коэффициент активности. Произведение растворимости.
- •64) Электролитическая диссоциация воды. Ионное произведение воды Водородный показатель.
- •68)Медно-цинковый гальванический элемент. Процессы на электродах. Эдс, как алгебраическая сумма скачков потенциалов. Медно-цинковый гальванический элемент – элемент Якоби-Даниэля.
- •70) Водородный электрод.
- •73) Законы электролиза.….1-й закон:
58) Растворимость газов в жидкостях. Закон Генри и Дальтона. Ур-е Сивертса. Закон распределения. Практическое применение закона распределения.
В отличие от предыдущего случая с ростом температуры р-римость уменьшается. Закон В. Генри. При постоянной температуре р-римость газа, выраженная в весовых единицах пропорциональна давлению газа над жидкостью. V(уменьш)=K1*P Скорость растворимости газа в жидкости. V(увелич)=K2*С Скорость растворимости жидкости в газе. V(уменьш)=V(увелич). K1*P=K2*С. С/P=K1/K2=Г - константа Генри
C=Г*Р Концентрация пропорциональна давлению. Закон Сивертса.: C=Г*Р^n где n понижается с ростом температуры. Полностью закон Генри выполняется для идеальных газов, дающих в итоге идеальные р-ры.
Закону Генри строго подчиняются только те газы, которые не взаимодействуют с р-рителем, их р-римость не велика. t=0, 100гр H2O р=1 атм, 0.335г CO2; t=0, 100гр H2O р=2 атм, 0.67г CO2
С ростом давления увеличивается плотность газа, т.е. при р=2атм газ занимает тот же объем. Р-римость газа, выраженная в объемных ед. от объема не зависит (Объем. ед./100)
Закон Дальтона.: При растворении смеси газов в жидкости р-римость каждого компонента пропорциональна его парциальному давлению. (Кислород в воде)
(кислород) t=20, 100мл Н2О, р=1атм, 3.1 мл O2
(воздух) t=20, 100мл Н2О, р=1атм, 0.62 мл O2
Законы Генри и Дальтона - следствия.
Закон распределения.
(рис)
Если при постоянной температуре некоторое в-во распределяется между двумя соприкасающимися фазами, то отношение концентрации этого в-ва в соприкасающихся фазах есть величина постоянная, называется коэфф. растворения "L". Величина "L" не зависит от абс. кол-ва вводимого 3-го в-ва, а определяется природой фаз 1,2 и природой в-ва 3.
С/Р=Г
Закон распределения применяется в технике. (при экстракции стали из шлака) (см рисунок+формулы)
Закон распределения используется при глубокой очистке полупроводниковых материалов (метод плавки по закону распределения) (см рисунок+формулы)
60) Первый и второй законы Рауля. Определение молекулярных масс различных веществ (эбулио и криоскопия).
Закон Ф.М. Рауля.
Наблюдая св-ва р-ров Рауль пришел к выводу: Давление пара р-рителя над р-ром всегда ниже давления пара над чистым р-рителем. Вызвано это тем, что часть поверхности р-ра занята гидротированными частицами растворимого в-ва. Испарение раствор. затруднено.
Р0 - давление пара р-рителя над чистым р-рителем
Р1 - давление пара р-рителя над р-ром.
(дельта)Р=Р0-Р1 - абсолютное понижение давления пара р-рителя над р-ром.
(дельта)Р/Р0 - относительное понижение давления пара р-рителя над р-ром.
Р1=Р1*N1=P0*(n1/(n1+n2)
Р1 пропорц. мольной доле р-рителя в р-ре
Относительное понижение пара р-рителя над р-ром равно мольной доле растворенного в-ва: (дельта)Р/Р0=N2
(график)
Могут быть и отклонения от прямолинейной зависимости. По величине отклонения можно судить насколько система далека от идеального состояния. А по характеру отклонения "+" и "-" каков характер зависимости между компонентами в реальной системе. Т.к. давление пара раствора меньше, то р-ры должны кипеть при t более высокой, а замерзнуть при t менее низкой, чем чистые р-рители.
(график)
Повышение температуры кипения р-ра и понижение температуры его замерзания пропорциональны молярной концентрации р-ра См Кэ и Кз - константы, характеризующие р-ритель Кэ - эбуллиоскопическая Кз - криоскопическая (дельта)Т не зависит от природы р-ренного в-ва, а определяется природой р-рителя и числом молей р-ренного в-ва. Для Н2О Кэ=0.512, Кз=1.86
Задача 1г сахара на 1000г Н2О T кипения р-ра -? С12Н22О11 М=342. (дельта)Т=Кэ*См (Кэ=512, См=1/342 (1000г р-рителя)) (дельта)Тк=0.0015 Тк=100.0015
2 Закон Рауля используется для определения неизвестных молекулярных масс р-ренных веществ.
Задача Мх-? м1,м2,(дельта)Тк. (дельта)Тк=Кэ*См=Кэ*м1*1000/Мх*м2 Мх=Кэ*м1*1000/(дельта)Тк*м2
Эбуллиоскопическая - (дельта)Тк Криоскопическая - (дельта)Тз
61) Р-ры электролитов. теория электролитической диссоциации. Диэлектрическая проницаемость различных растворителей.
Электролиты - в-ва, которые в р-ре или расплаве полностью или частично состоят из ионов, заряженных частиц. Электролиты 2 рода. При прохождении эл тока через электролиты происходит электролиз. Р-ры электролитов не подчиняющиеся законам Рауля. Р-ры э-литов кипят при температуре большей, и замерзают при температуре меньшей, чем р-ры не электролитов той же молекулярной концентрации. Причину этого объяснил С.А. Аррениус. Теория электролитической диссоциации.
Согласно Аррениусу электролиты при растворении или плавлении распадаются на ионы. При этом каждый ион – самостоятельная частица. В результате диссоциации моляльная концентрация увеличивается, отсюда отклонение от закона Рауля. Степень полярности характеризуется величиной диэлектрической проницаемости р-рителя “Е” Чем больше Е тем ярче выражена гидратация. (ряд примеров)