
- •Физические основы микроэлектроники
- •Глава 1. Структура и физико-механические свойства твердых тел
- •1.1. Кристаллизация
- •Структура идеальных кристаллов
- •Обозначение узлов, направлений и плоскостей в кристалле.
- •Жидкие кристаллы
- •Молекул в кристаллической (а), жидкокристаллической (нематической) (б) и жидкой (в) фазах
- •И смектической (б) фазах
- •Типы межатомной связи и классификация твердых тел
- •Кристаллов с ковалентной связью: а — элементы группы ivb;
- •Дефекты реальных кристаллов
- •Внедрения (а) и замещения (б)
- •Диффузия в твердых телах
- •Два соседних узла решетки, один из которых занят атомом а, другой вакансией в
- •Распределение примеси в частных случаях диффузионного процесса
- •1. Диффузия из источника с постоянной поверхностной концентрацией.
- •2. Диффузия из тонкого слоя с фиксированным количеством примеси.
- •Температурная зависимость коэффициента диффузии.
- •Поверхностная диффузия.
- •Деформационные свойства кристаллических тел
- •Рекристаллизация
- •Дислокации
- •Перпендикулярной линии дислокации
- •Явления упрочнения
- •Физические свойства пленок и покрытий
- •Адгезия пленок и покрытий
- •Формирование адгезионной связи.
- •1. Пластичные металлы в месте соприкосновения подвергаются сильной пластической деформации (рис. 2.12), при которой полностью сминаются все неровности. Так осуществляется холодная сварка.
- •Тела жидкостью
- •Функции распределения невырожденного и вырожденного газов
- •Ферми — Дирака для вырожденного газа при абсолютном нуле.
- •Влияние температуры на распределение ферми — дирака.
- •Тепловые свойства твердых тел. Понятие о нормальных колебаниях решетки
- •Элементы зонной теории твердых тел зонный характер энергетического спектра кристаллов
- •Образование энергетических зон.
- •Эффективная масса электрона
- •Заполнение зон электронами; деление на проводники, диэлектрики и полупроводники
- •Собственные полупроводники
- •Примесные уровни в полупроводниках
- •Статистика носителей заряда в полупроводниках.
- •Положение уровня ферми и концентрация свободных носителей заряда в собственных и примесных полупроводниках
- •Основные и неосновные носители.
- •Неравновесные носители
- •Электропроводность твердых тел
- •Электропроводность металлов и сплавов
- •Электропроводность металлических сплавов.
- •Эффекты сильного поля
- •Явление сверхпроводимости
- •Температуры
- •Потенциального барьера при эффекте Шоттки
- •Контактная разность потенциалов
- •Электронно-дырочный переход. Методы получения р-п-перехода
Основные и неосновные носители.
В примесных полупроводниках проводимость обусловливается в основном носителями одного знака: электронами в полупроднике с донорными примесями (или дырками в полупроводнике с акцепторными примесями), они называются основными.
Однако, в результате межзонной тепловой генерации появляются в донорном полупроводнике — дырки, (в акцепторном полупроводнике — электроны), это неосновные носители,.
Умножая на основе (6.13), получаем:
(6.29)
Удобно равновесные концентрации носителей обозначать так: nп0 и pп0—концентрация электронов (основных носителей) и дырок (неосновных носителей) в полупроводнике n-типа; рр0 и nр0 — концентрация дырок (основных носителей) и электронов (неосновных носителей) в полупроводнике р-типа. В этих обозначениях (6.29) перепишется следующим образом:
(6.30)
Таким образом, произведение равновесных концентраций основных и неосновных носителей заряда равно квадрату концентрации собственных носителей в этом полупроводнике. Это соотношение называют законом действующих масс.
Вместе возникновением носителей заряда происходит процесс рекомбинации. Динамическое равновесие приводит к установлению равновесной концентрации носителей.
Неравновесные носители
Помимо теплового процесса, возможны и другие способы генерации свободных носителей: под действием света, ионизирующих частиц, инжекции их через контакт. Это приводит к появлению избыточных по сравнению с равновесными носителей.
Концентрация избыточных носителей тогда равна:
(6.31)
где n0 и р0 — концентрации равновесных носителей.
Скорость генерации и рекомбинации. Каждый неравновесный носитель, возникнув в полупроводнике, «живет» в нем ограниченное время до своей рекомбинации (гибели), поэтому вводят понятие времени жизни неравновесных носителей.
Процесс генерации носителей характеризуют скоростью генерации g , g– число носителей, возникающих в единицу времени в единице объема.
Процесс рекомбинации характеризуют скоростью рекомбинации R, R – число носителей (число пар носителей), рекомбинирующих в единице объема полупроводника в единицу времени.
После выключения света носители будут рекомбинировать и их концентрация будет постепенно уменьшаться. Среднее время жизни избыточных носителей равно времени т, в течение которого их концентрация вследствие рекомбинации уменьшается в е раз.
Свободные носители заряда, диффундируя в объеме полупроводника, за время своей жизни т перемещаются в среднем на расстояние L, которое называют диффузионной длиной носителей. Как показывает расчет, L зависит от т следующим образом:
(6.40)
Здесь D — коэффициент диффузии носителей, связанный с их подвижностью соотношением Эйнштейна:
(6.41)
где k — постоянная Больцмана; q — заряд электрона.
На рис. 6 9 показан процесс перехода электрона из зоны проводимости в валентную зону при рекомбинации через всю запрещенную зону Eg, (стрелка 1 на рис. 6.9), или сначала на примесный уровень Ел (стрелка 2), а затем с примесного уровня в валентную зону (стрелка 3). Первый тип рекомбинации называют межзонным, второй -рекомбинацией через примесный уровень.
Рис. 6 9. Схема межзонной рекомбинации и рекомбинации через локальный уровень