
Багатоядерні процесори
Найзначнішою подією 2005 року стала поява двоядерних процесорів. До того часу класичні одноядерні CPU певною мірою вичерпали резерви зростання продуктивності за рахунок підвищення робочої частоти. Каменем спотикання стало не тільки дуже високе тепловиділення процесорів, що працюють на високих частотах, але і проблеми з їхньою стабільністю. Отже, екстенсивний шлях розвитку процесорів вичерпався і виробникам довелося освоювати новий, інтенсивний шлях підвищення продуктивності продукції. Піонером на ринку десктопних CPU, як зазвичай, стала компанія Intel, що першою анонсувала двоядерні процесори Intel Pentium D і Intel Extreme Edition. Втім, AMD з Athlon64 X2 відстала від конкурента буквально на лічені дні. Безперечним досягненням цих двоядерників першого покоління є їхня повна сумісність з існуючими системними платами. Друге покоління двоядерних процесорів, зокрема, Intel Core 2 Duo, вимагає спеціально розроблених для них чипсетів і зі старими материнськими платами не працює.
На сьогоднішній день для роботи з двоядерними процесорами більш-менш оптимізовано в основному професійне ПЗ (включаючи роботу з графікою, аудіо- і відеоданими), тоді як для офісного або домашнього користувача друге процесорне ядро іноді приносить користь, але частіше є мертвим вантажем. Але ринок неухильно рухається у бік мультиядерних систем і оптимізованих паралельних обчислень. Така тенденція буде пануючою найближчими роками, так що частка ПЗ, оптимізованого під декілька ядер, неухильно зростатиме, і дуже скоро може наступити момент, коли багатоядерність стане насущною необхідністю.
Кеш-пам'ять. Особлива високошвидкісна пам'ять процесора. Кеш використовується як буфер для прискорення обміну даними між процесором і оперативною пам'яттю, а також для збереження копій інструкцій і даних, що недавно використовувалися процесором. Значення з кеш-пам'яті витягаються прямо, без звертання до основної пам'яті.
Кеш першого рівня (L1 cache). Кеш-пам'ять, що знаходиться усередині процесора. Вона швидша за всі інші типи пам'яті, але менша за обсягом. Зберігає нещодавно використану інформацію, яка знову може бути використана при виконанні коротких програмних циклів.
Кеш другого рівня (L2 cache). Також знаходиться усередині процесора. Інформація, що зберігається в ній, використовується рідше, ніж інформація, що зберігається в кеш-пам'яті першого рівня, проте обсяг пам'яті у ній більший. Також у наш час в процесорах використовується кеш третього рівня.
Відеоадаптер
Відеока́рта (графічна карта, графічний адаптер, графічний прискорювач (англ. videocard) — пристрій, призначений для обробки, генерації зображень з подальшим їх виведенням на екран периферійного пристрою.
Відеокарта зазвичай є платою розширення (дискретна відеокарта) і вставляється у слот розширення, універсальний (PCI-Express, PCI, ISA, VLB, EISA, MCA) або спеціалізований (AGP), проте відеокарта може бути вбудованою (інтегрованою) у материнську плату (як у вигляді окремого елементу, так і в якості складової частини північного мосту чіпсету або ЦПУ).
Сучасні відеокарти не обмежуються лише звичайним виведенням зображень, вони мають вбудований графічний мікропроцесор, котрий може проводити додаткову обробку, звільняючи від цих задач центральний процесор. Наприклад, усі сучасні відеокарти NVIDIA і AMD (ATi) підтримують OpenGL на апаратному рівні.
Відеопам`ять (video RAM) — доступна відеокарті область оперативної пам`яті комп'ютера, в якій розміщені дані, що відповідають зображенню на екрані. Відеопам'ять може бути виділена з основної оперативної пам'яті системи, в цьому випадку говорять про розподілювальну (shared) пам'ять. У відеопам'яті може міститися як безпосередньо растровий образ зображення (екранний кадр), так і окремі фрагменти як в растровій (текстури), так і у векторній (багатокутники, зокрема трикутникі) формах. Як правило, чипи оперативної пам'яті припаяні прямо до текстоліту (плати) відеокарти, на відміну від знімних модулів системної пам'яті, які вставляються в стандартизовані розніми материнських плат. Одна половина чипів, зазвичай, припаяна під радіатором системи охолоджування відеокарти, а друга — із зворотного боку. Така оперативна пам'ять використовується тільки під потреби різних графічних застосунків і ігор. Технології виробництва пам'яті для відеокарт розвиваються стрімкіше, ніж ОЗП для персональних комп'ютерів, це обумовлено високими вимогами ігрової індустрії; тому як правило технологія встановленої відеопам'яті на покоління випереджає основну системну пам'ять.
Характеристики
ширина шини пам'яті, вимірюється в біт ах - кількість біт інформації, переданої за такт. Важливий параметр в продуктивності карти.
обсяг відеопам'яті, вимірюється в мегабайт ах - обсяг власної оперативної пам'яті відеокарти. Більший обсяг далеко не завжди означає більшу продуктивність.
Покоління 3D-прискорювачів
Найперші прискорювачі використовували Glide - API для тривимірної графіки, розроблений 3dfx Interactive для відеокарт на основі власних графічних процесорів Voodoo Graphics.
Потім покоління прискорювачів в відеокартах можна вважати за версією DirectX, яку вони підтримують. Розрізняють наступні покоління:
DirectX 7 - карта не підтримує шейдер и, всі картинки малюються накладенням текстур;
DirectX 8 - підтримка піксельних шейдеров версій 1.0, 1.1 і 1.2, в DX 8.1 ще й версію 1.4, підтримка вершинних шейдеров версії 1.0;
DirectX 9 - підтримка піксельних шейдеров версій 2.0, 2.0a і 2.0b, 3.0;
DirectX 10 - підтримка уніфікованих шейдеров версії 4.0;
DirectX 10.1 - підтримка уніфікованих шейдеров версії 4.1;
DirectX 11 - підтримка уніфікованих шейдеров версії 5.0.