
- •Глава 1
- •1.2. Процедурные языки
- •1.3. Языки, ориентированные на данные
- •1.4. Объектно-ориентированные языки
- •1.5. Непроцедурные языки
- •1.6. Стандартизация
- •1.7. Архитектура компьютера
- •1.8. Вычислимость
- •1.9. Упражнения
- •Глава 2
- •2.2. Семантика
- •2.3. Данные
- •2.4. Оператор присваивания
- •2.5. Контроль соответствия типов
- •2.7. Подпрограммы
- •2.8. Модули
- •2.9. Упражнения
- •Глава 3
- •3.1. Редактор
- •3.2. Компилятор
- •3.3. Библиотекарь
- •3.4. Компоновщик
- •3.5. Загрузчик
- •3.6. Отладчик
- •3.7. Профилировщик
- •3.8. Средства тестирования
- •3.9. Средства конфигурирования
- •3.10. Интерпретаторы
- •3.11. Упражнения
- •Глава 4
- •4.1. Целочисленные типы
- •I: Integer; -- Целое со знаком в языке Ada
- •4.2. Типы перечисления
- •4.3. Символьный тип
- •4.4. Булев тип
- •4.5. Подтипы
- •4.6. Производные типы
- •4.7. Выражения
- •4.8. Операторы присваивания
- •4.9. Упражнения
- •Глава 5
- •5.1. Записи
- •5.2. Массивы
- •5.3. Массивы и контроль соответствия типов
- •Подтипы массивов в языке Ada
- •5.5. Строковый тип
- •5.6. Многомерные массивы
- •5.7. Реализация массивов
- •5.8. Спецификация представления
- •5.9. Упражнения
- •Глава 6
- •6.1. Операторы switch и case
- •6.2. Условные операторы
- •6.3. Операторы цикла
- •6.4. Цикл for
- •6.5. «Часовые»
- •6.6. Инварианты
- •6.7. Операторы goto
- •6.8. Упражнения
- •Глава 7
- •7.1. Подпрограммы: процедуры и функции
- •7.2. Параметры
- •7.3. Передача параметров подпрограмме
- •7.4. Блочная структура
- •7.5. Рекурсия
- •7.6. Стековая архитектура
- •7.7. Еще о стековой архитектуре
- •7.8. Реализация на процессоре Intel 8086
- •7.9. Упражнения
- •Глава 8
- •8.1 . Указательные типы
- •8.2. Структуры данных
- •8.3. Распределение памяти
- •8.4. Алгоритмы распределения динамической памяти
- •8.5. Упражнения
- •Глава 9
- •9.1. Представление вещественных чисел
- •9.2. Языковая поддержка вещественных чисел
- •9.3. Три смертных греха
- •Вещественные типы в языке Ada
- •9.5. Упражнения
- •Глава 10
- •10.1. Преобразование типов
- •10.2. Перегрузка
- •10.3. Родовые (настраиваемые) сегменты
- •10.4. Вариантные записи
- •10.5. Динамическая диспетчеризация
- •10.6. Упражнения
- •Глава 11
- •11.1. Требования обработки исключительных ситуаций
- •11.2. Исключения в pl/I
- •11.3. Исключения в Ada
- •11.5. Обработка ошибок в языке Eiffei
- •11.6. Упражнения
- •Глава 12
- •12.1. Что такое параллелизм?
- •12.2. Общая память
- •12.3. Проблема взаимных исключений
- •12.4. Мониторы и защищенные переменные
- •12.5. Передача сообщений
- •12.6. Язык параллельного программирования оссаm
- •12.7. Рандеву в языке Ada
- •12.9. Упражнения
- •Глава 13
- •13.1. Раздельная компиляция
- •13.2. Почему необходимы модули?
- •13.3. Пакеты в языке Ada
- •13.4. Абстрактные типы данных в языке Ada
- •13.6. Упражнения
- •Глава 14
- •14.1. Объектно-ориентированное проектирование
- •В каждом объекте должно скрываться одно важное проектное решение.
- •14.3. Наследование
- •14.5. Объектно-ориентированное программирование на языке Ada 95
- •Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
- •14.6. Упражнения
- •Глава 15
- •1. Структурированные классы.
- •15.1. Структурированные классы
- •5.2. Доступ к приватным компонентам
- •15.3. Данные класса
- •15.4. Язык программирования Eiffel
- •Если свойство унаследовано от класса предка более чем одним путем, оно используется совместно; в противном случае свойства реплицируются.
- •15.5. Проектные соображения
- •15.6. Методы динамического полиморфизма
- •15.7. Упражнения
- •5Непроцедурные
- •Глава 16
- •16.1. Почему именно функциональное программирование?
- •16.2. Функции
- •16.3. Составные типы
- •16.4. Функции более высокого порядка
- •16.5. Ленивые и жадные вычисления
- •16.6. Исключения
- •16.7. Среда
- •16.8. Упражнения
- •Глава 17
- •17.2. Унификация
- •17.4. Более сложные понятия логического программирования
- •17.5. Упражнения
- •Глава 18
- •18.1. Модель Java
- •18.2. Язык Java
- •18.3. Семантика ссылки
- •18.4. Полиморфные структуры данных
- •18.5. Инкапсуляция
- •18.6. Параллелизм
- •18.7. Библиотеки Java
- •8.8. Упражнения
Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
Реализации диспетчеризации во время выполнения в языках Ada 95 и C++ похожи, тогда как условия для диспетчеризации совершенно разные:
• В C++ подпрограмма должна быть объявлена виртуальной, чтобы можно было выполнить диспетчеризацию. Все косвенные вызовы виртуальной подпрограммы диспетчеризуются.
• В языке Ada 95 любая унаследованная подпрограмма может быть замещена и неявно становится диспетчеризуемой. Диспетчеризация выполняется только в случае необходимости, если этого требует конкретный вызов.
Основное преимущество подхода, принятого в языке Ada, состоит в том, что не нужно заранее определять, должен ли использоваться динамический полиморфизм. Это означает, что не существует различий в семантике между вызовом виртуальной и невиртуальной подпрограммы. Предположим, что Airplane_Data был определен как теговый, но никакие порождения сделаны не были. В этом случае вся система построена так, что в ней все вызовы разрешены статически. Позже, если будут объявлены производные типы, они смогут использовать диспетчеризацию без изменения или перекомпиляции существующего кода.
14.6. Упражнения
1. Метод разработки программного обеспечения, называемый нисходящим программированием, пропагандирует написание программы в терминах операций высокого уровня абстракции и последующей постепенной детализации операций, пока не будет достигнут уровень операторов языка программирования. Сравните этот метод с объектно-ориентированным программированием.
2. Объявили бы вы Aircraft_Data абстрактным типом данных или сделали поля класса открытыми?
3. Проверьте, что можно наследовать из класса в языке C++ или из тегового пакета в языке Ada 95 без перекомпиляции существующего кода.
4. Опишите неоднородную очередь на языке Ada 95: объявите теговый тип Item, определите очередь в терминах Item, а затем породите из Item производные типы — булев, целочисленный и символьный.
5. Опишите неоднородную очередь на языке C++.
6. Проверьте, что в языке C++ диспетчеризация имеет место для ссылочного, но не для обычного параметра.
7. В языке Ada 95 теговый тип может быть расширен приватными добавлениями:
with Airplane_Package; use Airplane_Package;
package SST_Package is
type SST_Data is new Airplane_Data with private;
procedure Set_Speed(A: in out SST_Data; I: in Integer);
function Get_Speed(A: SST_Data) return Integer;
private
…
end SST_Package;
Каковы преимущества и недостатки такого расширения?
8. Изучите машинные команды, сгенерированные компилятором Ada 95 или C++ для динамического полиморфизма.
Глава 15
Еще об
объектно-ориентированном
программировании
В этой главе мы рассмотрим еще несколько конструкций, которые существуют в объектно-ориентированных языках. Это не просто дополнительные удобства — это существенные конструкции, которые необходимо освоить, если вы хотите стать компетентными в объектно-ориентированных методах программирования. Данный обзор не является исчерпывающим; детали можно уточнить в учебниках по языкам программирования. Глава разделена на шесть разделов: