Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по астрономии. Часть 1.doc
Скачиваний:
173
Добавлен:
09.09.2019
Размер:
861.18 Кб
Скачать

§ 1.8. Рефракция

Видимое положение светила над горизонтом, строго говоря, отличается от вычисленного по формулам. Дело в том, что лучи света от небесного тела, прежде чем попасть в глаз наблюдателя, проходят сквозь атмосферу Земли и преломляются в ней, а так как плотность атмосферы увеличивается к поверхности Земли, то луч света (рис. 1.12) все более и более отклоняется в одну и ту же сторону по кривой линии, так что направление ОМ1 , по которому наблюдатель О видит светило, оказывается отклоненным в сторону зенита и не совпадающим с направлением ОМ2 (параллельным ВМ), по которому он видел бы светило при отсутствии атмосферы.

Рис. 1.12. Астрономическая рефракция.

Явление преломления световых лучей при прохождении ими земной атмосферы называется астрономической рефракцией.

Угол M1OM2 называется углом рефракции или рефракцией  . Угол ZOM1 называется видимым зенитным расстоянием светила z', а угол ZOM2 — истинным зенитным расстоянием z.

Непосредственно из рис. 1.12 следует

z z' =  или z = z' + ,

т.е. истинное зенитное расстояние светила больше видимого на величину рефракции . Рефракция как бы приподнимает светило над горизонтом.

По законам преломления света луч падающий и луч преломленный лежат в одной плоскости. Следовательно, траектория луча МВО и направления ОМ2 и OM1 лежат в одной вертикальной плоскости. Поэтому рефракция не изменяет азимута светила, и, кроме того, равна нулю, если светило находится в зените.

Если светило находится в кульминации, то рефракция изменяет только его склонение и на ту же величину, что и зенитное расстояние, так как в этом случае плоскости его часового и вертикального кругов совпадают. В остальных случаях, когда эти плоскости пересекаются под некоторым углом, рефракция изменяет и склонение, и прямое восхождение светила.

Точная теория рефракции очень сложна и рассматривается в специальных курсах. Рефракция зависит не только от высоты светила над горизонтом, но и от состояния атмосферы, главным образом от ее плотности, которая сама является функцией, в основном температуры и давления. При давлении В мм. рт. ст. и температуре t° С приближенное значение рефракции

(1.17)

По формуле (1.17) рефракция вычисляется в тех случаях, когда видимое зенитное расстояние z' < 70°. При z' > 70° формула дает ошибку больше 1", увеличивающуюся при дальнейшем приближении к горизонту до бесконечности, тогда как действительная величина рефракции в горизонте составляет около 35'. Поэтому для зенитных расстояний z' > 70° рефракция определяется путем сочетания теории со специальными наблюдениями.

Вследствие рефракции наблюдается изменение формы дисков Солнца и Луны при их восходе или заходе. Рефракция нижних краев дисков этих светил у горизонта почти на 6' больше рефракции верхних краев, а так как горизонтальные диаметры рефракцией не изменяются, то видимые диски Солнца и Луны принимают овальную форму.

§ 1.9. Видимое годовое движение Солнца. Эклиптика. Эклиптическая система координат

Измерениями зенитного расстояния или высоты Солнца в полдень (т.е. в момент его верхней кульминации) на одной и той же географической широте было установлено, что склонение Солнца в течение года изменяется в пределах от +23°26' до 23°26', два раза в году переходя через нуль. Из наблюдений за изменением вида ночного неба следует, что и прямое восхождение Солнца на протяжении года также постепенно изменяется от 0° до 360°, или от 0h до 24h. Действительно, в полночь в верхней кульминации находятся те звезды, прямые восхождения которых отличаются от прямого восхождения Солнца на 180° или на 12h. Наблюдения же показывают, что с каждым днем в полночь кульминируют звезды все с большим и большим прямым восхождением, следовательно, и прямое восхождение Солнца с каждым днем увеличивается.

Рассматривая непрерывное изменение обеих координат Солнца, нетрудно установить, что оно перемещается в течение года среди звезд с запада к востоку по большому кругу небесной сферы, который называется эклиптикой. Плоскость эклиптики (рис. 1.13) наклонена к плоскости небесного экватора под углом  = 23°26'. Направление перемещения Солнца по эклиптике противоположно направлению суточного вращения небесной сферы. При своем движении по эклиптике Солнце пересекает ряд созвездий, называемых зодиакальными.

Диаметр ПП', перпендикулярный к плоскости эклиптики, называется осью эклиптики и пересекается с поверхностью небесной сферы в северном полюсе эклиптики П (лежащем в северном полушарии) и в южном полюсе эклиптики П' (в южном полушарии).

Рис. 1.13. Эклиптическая система координат.

Эклиптика пересекается с небесным экватором в двух точках: в точке весеннего равноденствия  и в точке осеннего равноденствия . В точке весеннего равноденствия  Солнце пересекает небесный экватор, переходя из южного полушария небесной сферы в северное (этот день называется днем весеннего равноденствия (около 21 марта). В точке осеннего равноденствия  Солнце переходит из северного полушария в южное ( день осеннего равноденствия (около 23 сентября).

Точки эклиптики, отстоящие от равноденственных на 90°, называются точкой летнего солнцестояния  (Солнце находится здесь в день летнего солнцестояния (около 22 июня) и точкой зимнего солнцестояния  (день зимнего солнцестояния (около 22 декабря).

Причиной движения Солнца по эклиптике является годовое обращение Земли вокруг Солнца. Угол  в точности равен углу наклона плоскости земного экватора к плоскости земной орбиты.

Солнце движется по эклиптике неравномерно: в декабре-январе — быстрее всего, в июле-августе— медленнее всего, это происходит вследствие вытянутости земной орбиты. Средняя скорость движения Солнца по эклиптике составляет 59 за сутки.

Большой полукруг небесной сферы, проходящий через полюсы эклиптики и через светило М, называется кругом широты светила.

Эклиптика и точка весеннего равноденствия лежат в основе эклиптической системы небесных координат. Одной координатой в этой системе является эклиптическая широта светила М, которой называется дуга тМ круга широты (см. рис. 1.13) от эклиптики до светила, или центральный угол тОМ между плоскостью эклиптики и направлением на светило М.

Эклиптические широты отсчитываются в пределах от 0° до + 90° к северному полюсу эклиптики (П) и от 0° до 90° к ее южному полюсу (П').

Эклиптическая широта определяет положение светила на круге широты. Положение же самого круга широты на небесной сфере определяется другой координатой — эклиптической долготой . Эклиптической долготой   светила М называется дуга m эклиптики от точки весеннего равноденствия  до круга широты, проходящего через светило, или центральный угол От (в плоскости эклиптики) между направлением на точку весеннего равноденствия и плоскостью круга широты, проходящего через светило. Эклиптические долготы отсчитываются в сторону видимого годичного движения Солнца по эклиптике, т.е. с запада к востоку в пределах от 0° до 360°. Светила, находящиеся на одном круге широты, имеют одинаковые эклиптические долготы.

Эклиптическая система координат применяется преимущественно в теоретической астрономии при определении орбит небесных тел.