
- •А. И. Тихонов, с. В. Бирюков, а. В. Бубнов информационно-измерительные и электронные приборы и устройства
- •Оглавление
- •I. Электронные приборы и устройства 8
- •II. Информационно-измерительные приборы и устройства 121
- •III. Индивидуальные задания 215
- •Введение
- •I. Электронные приборы и устройства
- •1. Лабораторные работы по электронике на стендах
- •1.1.1. Принцип работы схемы
- •1.2. Дифференцирующие цепи
- •1.2.1. Принцип работы схемы
- •2. Задания при подготовке к работе и ее выполнении
- •3. Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа № 2 исследование вольт-амперных характеристик полупроводниковых диодов и простейших выпрямительных схем на их основе
- •1. Теоретические сведения
- •1.1. Вольт-амперная характеристика
- •1.2. Однополупериодный выпрямитель
- •1.3. Двухполупериодный мостовой выпрямитель (схема Греца)
- •2. Задания при подготовке к работе и ее выполнении
- •3. Порядок выполнения лабораторной работы
- •Контрольные вопросы
- •Лабораторная работа № 3 исследование основных параметров и характеристик широкополосного усилителя на биполярном транзисторе
- •1. Задание к работе
- •2. Описание работы
- •3. Порядок проведения работы
- •3.1. Измерение коэффициента усиления
- •3.2. Измерение входного сопротивления Rвх усилителя
- •3.3. Измерение выходного сопротивления Rвых усилителя
- •3.4. Амплитудно-частотная характеристика (ачх)
- •Контрольные вопросы
- •Библиографический список
- •1.2. Электронный усилитель и его основные нелинейные параметры
- •1.3. Двухсигнальный метод измерения коэффициентов интермодуляционных составляющих сигнала
- •2. Задания при подготовке к работе и ее выполнении
- •3. Методика выполнения работы
- •Контрольные вопросы
- •1.2. Инвертирующий усилитель на основе операционного усилителя
- •2. Задания при подготовке к работе и ее выполнении
- •3. Порядок выполнения работы
- •4. Методика выполнения работы
- •Контрольные вопросы
- •1.2. Теоретические основы анализа явления блокирования
- •1.3. Определение параметров нелинейности эу на основе измерения коэффициентов интермодуляции и блокирования
- •2. Задания при подготовке к работе и ее выполнении
- •3. Методика выполнения работы
- •Контрольные вопросы к защите лабораторной работы
- •2. Лабораторные работы по электронике на эвм
- •Компьютерная лабораторная работа № 1 исследование интегрирующих и дифференцирующих четырехполюсников
- •1. Теоретические сведения
- •2. Домашнее задание
- •3. Экспериментальная часть
- •3.1. Задание
- •3.2. Порядок выполнения эксперимента
- •1. Домашнее задание
- •2. Экспериментальная часть
- •3.1. Задание
- •3.2. Порядок выполнения эксперимента
- •4. Содержание отчета
- •Вопросы к защите
- •Компьютерная лабораторная работа № 3 исследование основных параметров и характеристик электронного усилителя на биполярном транзисторе
- •1. Теоретические сведения
- •2. Домашнее задание
- •3. Экспериментальная часть
- •3.1. Задание
- •3.2. Порядок выполнения эксперимента
- •4. Содержание отчета
- •Вопросы к защите
- •Компьютерная лабораторная работа № 4 исследование основных параметров и характеристик электронного усилителя на полевом транзисторе
- •1. Теоретические сведения
- •2. Домашнее задание
- •3. Экспериментальная часть
- •3.1. Задание
- •3.2. Порядок выполнения эксперимента
- •4. Содержание отчета
- •Вопросы к защите
- •Компьютерная лабораторная работа № 5 исследование инвертирующего усилителя
- •1. Теоретические сведения
- •2. Домашнее задание
- •3. Экспериментальная часть
- •3.1. Задание
- •3.2. Порядок выполнения эксперимента
- •4. Содержание отчета
- •Вопросы к защите
- •Компьютерная лабораторная работа № 6 исследование мультивибратора
- •1. Теоретические сведения
- •2. Домашнее задание
- •3. Экспериментальная часть
- •3.1. Задание
- •3.2. Порядок выполнения эксперимента
- •4. Содержание отчета
- •2. Теоретические сведения
- •2.1. Метод амперметра и вольтметра
- •3. Порядок проведения работы
- •3.1. Измерение сопротивлений методом амперметра и вольтметра
- •Контрольные вопросы
- •Библиографический список к работе
- •Лабораторная работа № 2 исследование простейших измерительных преобразователей тока и напряжения для расширения пределов измерения приборов
- •1. Задания при подготовке к работе и ее выполнении
- •2. Теоретические сведения
- •2.1. Шунты
- •2.2. Добавочные сопротивления
- •2.3. Измерительные трансформаторы переменного тока и напряжения
- •3. Порядок проведения работы
- •Контрольные вопросы
- •Библиографический список к работе
- •Лабораторная работа № 3 измерение электрических величин r, c, l с помощью мостовых схем
- •1. Задания при подготовке к работе и ее выполнении
- •2. Теоретические сведения
- •2.1. Основное условие баланса мостовой схемы и его применение для точного измерения сопротивлений резисторов
- •2.2. Измерение емкости конденсаторов
- •2.3. Измерение индуктивностей катушек
- •3. Порядок проведения работы
- •Контрольные вопросы
- •Библиографический список к работе
- •Лабораторная работа № 4 электронный счетчик электрической энергии
- •1. Задания при подготовке к работе и ее выполнении
- •2. Теоретические сведения и описание лабораторного стенда
- •2.1. Лабораторная установка
- •2.2. Функциональная схема электронного счетчика энергии
- •2.2.1. Импульсно-перемножающее устройство (ипу)
- •2.3. Принцип перемножения с помощью шим – аим
- •2.4. Импульсный интегратор (ии)
- •2.5. Соотношения, используемые при расчете
- •3. Порядок проведения работы
- •Контрольные вопросы
- •Библиографический список к работе
- •Лабораторная работа № 5 измерение параметров сигнала с помощью электронных приборов – осциллографа и частотомера
- •1. Задания при подготовке к работе и ее выполнении
- •2. Теоретические сведения и описание работы
- •2.1. Электронно-лучевой осциллограф
- •2.1.1. Электронно-лучевая трубка
- •2.1.2. Функциональная схема электронного осциллографа и его принцип действия
- •2.1.3. Применение электронного осциллографа для измерений
- •2.2. Цифровой частотомер
- •3. Порядок проведения работы
- •Контрольные вопросы
- •Библиографический список к работе
- •2. Лабораторные работы по информационно-измерительной технике на эвм
- •Компьютерная лабораторная работа № 1 измерение сопротивлений резисторов приборами непосредственной оценки и определение погрешностей, вносимых приборами
- •1. Задания при подготовке к работе и ее выполнении
- •2. Алгоритм работы программы для выполнения лабораторной работы
- •Приложение к работе
- •Компьютерная лабораторная работа № 2 исследование простейших измерительных преобразователей тока и напряжения для расширения пределов измерения приборов
- •1. Задания при подготовке к работе и ее выполнении
- •2. Алгоритм компьютерной программы для выполнения лабораторной работы
- •Компьютерная лабораторная работа № 3 измерение электрических величин r, c, l с помощью мостовых схем
- •1. Задания при подготовке к работе и ее выполнении
- •2. Алгоритм компьютерной программы для выполнения лабораторной работы
- •Лабораторная работа № 3 «измерение электрических величин r, c, l с помощью мостовых схем»
- •Библиографический список к работе
- •Компьютерная лабораторная работа № 4 электронный счетчик электрической энергии
- •1. Задания при подготовке к работе и ее выполнении
- •2. Алгоритм компьютерной программы для выполнения лабораторной работы
- •Лабораторная работа № 4 «электронный счетчик электрической энергии»
- •1. Нажмите кнопку «Теория» и ознакомьтесь с методичкой.
- •2. Для начала лабораторной работы нажмите «Испытания».
- •Библиографический список к работе
- •Компьютерная лабораторная работа № 5 измерение основных параметров и характеристик широкополосного усилителя
- •1. Задания при подготовке к работе и ее выполнении
- •2. Алгоритм компьютерной программы для выполнения лабораторной работы
- •2.1. Технические параметры исследуемого усилителя
- •2.2. Порядок выполнения лабораторной работы
- •Библиографический список к работе
- •Компьютерная лабораторная работа № 6 исследование блокирования усилительного каскада аппаратуры высокочастотной связи по линиям электропередачи
- •1. Задания при подготовке к работе и ее выполнении
- •2. Краткие теоретические сведения о лабораторной работе и двухсигнальном методе измерения блокирования
- •2.1. Электронный усилитель и его основные нелинейные параметры
- •2.2. Двухсигнальный метод измерения коэффициента блокирования
- •3. Алгоритм компьютерной программы для выполнения лабораторной работы
- •3.1. Последовательность в выполнении программных задач
- •3.2. Краткое описание алгоритма решения задачи
- •3.3. Алгоритм выполнения работы
- •Контрольные вопросы к защите лабораторной работы
- •Библиографический список к работе
- •III. Индивидуальные задания
- •1. Домашнее расчетно-графическое задание по основам электроники
- •1.1. Методика расчета
- •1.2. Пример расчета
- •А) Эмиттерный резистор
- •Б) Сопротивления делителя r1 и r2
- •В) Сопротивление коллекторного резистора Rк
- •Г) Блокирующая ёмкость (эмиттерный конденсатор)
- •2. Динамические параметры
- •Варианты заданий к расчету усилительного каскада на бпт 1т 313 б
- •2. Домашнее задание (курсовая работа) по дисциплинам «информационно-измерительная техника и электроника» и «измерительная техника-датчики»
- •1. Пояснение тематики заданий
- •Использование аппроксимации реальной характеристики передачи усилителя по ю. Б. Кобзареву для 11 равноотстоящих точек напряжений смещения
- •Типовое задание «Определение параметров нелинейности усилителя аппаратуры вч связи по лэп на основе аппроксимации его коэффициента усиления и выбор оптимального режима»
- •2. В зависимости от заданных условий решить одну из следующих задач.
- •Конкретный пример
- •Последовательность решения задачи
- •Типовое задание «Определение параметров нелинейности по интермодуляции и блокированию и выбор оптимального режима преобразователя частоты аппаратуры вч связи по лэп» Задание на курсовую работу
- •Основы обобщенного анализа нелинейных явлений в преобразователе частоты и получение исходных формул
- •Библиографический список
1.2. Теоретические основы анализа явления блокирования
Ранее, в лабораторной работе № 4, посвященной исследованию не-линейных параметров усилителя на полевом транзисторе, рассмотрен один из опасных видов нелинейности – интермодуляция, относящаяся к разряду так называемой «тонкой нелинейности». Вследствие интермодуляции, вызванной многочисленными помехами, имеющими место в упомянутых каналах ВЧ уплотнения по ВЛ, в усилителе из-за нелинейности его передаточной характеристики образуются нелинейные интермодуляционные (комбинационные) помехи второго fс ± fп, третьего 2fс – fп (или 2fп – fс) и других порядков. Их называют комбинационными продуктами нелинейного преобразования (ПНП), так как они являются комбинациями из двух, трех и т.д. частот сигналов, одним из которых является полезный сигнал с амплитудой Uс и частотой fс, а другой – помеха Uп с частотой fп.. Наиболее опасны ПНП третьего порядка, так как по частоте они всегда оказываются вблизи полезного сигнала, т.е. в полосе пропускания усилителя, и, следовательно, нарушают достоверность полезной информации.
Блокирование, в отличие от интермодуляции, относится к разряду так называемой «грубой» нелинейности, при которой в результате возрастающего уровня помехи, которая может находиться далеко за полосой пропускания усилителя, происходит изменение коэффициента усиления, превышающее допустимые пределы (обычно более 20 %) [13].
Нелинейные свойства усилителей, зависящие от указанных выше нелинейных явлений, в технической литературе определяются и анализируются различным образом. Классический анализ опирается в основном на методику, основанную на разложении в ряд Тейлора функции, выражающей зависимость выходного тока от напряжения на управляющем электроде усилительного прибора при сопротивлении нагрузки Rн = 0. При этом оказываются неучтенными нелинейность выходных сопротивлений, а также упомянутое сопротивление нагрузки. Последнее обстоятельство приводит к недопустимо большим погрешностям в количественной оценке ПНП, а следовательно, делает указанный метод практически непригодным для анализа нелинейных явлений, в особенности, при больших реальных уровнях помех на входе усилителя.
В [11, 13] показано, что при таких условиях наиболее целесообразно использовать методику анализа, основанную на разложении мгновенного коэффициента передачи (МКП) k(t) в ряд Тейлора, коэффициенты которого представляются в виде рядов Фурье по частоте помехи. Затем, выделив фильтром соответствующие спектральные составляющие выходного сигнала и воспользовавшись аппроксимацией реальной характеристики передачи усилительного прибора, находят постоянную составляющую и амплитуды соответствующих гармоник спектра, а, следовательно, соответствующие коэффициенты и параметры нелинейности.
Так, под воздействием аддитивно действующих на входе усилителя на ПТ мгновенных значений гармонических напряжений полезного сигнала uс и помехи uп при выбранном постоянном напряжении смещения между затвором и истоком Uсм = Uзи мгновенный коэффициент передачи усилителя запишется следующим образом.
,
(1)
где
;
;
– текущая фаза соответствующего
напряжения; Uс
и Uп
– амплитуды напряжений; Uс
< Uп
; Uс
<< Uзи.
В
результате разложения функции
и ее первой
и второй
производных в ряд Фурье по частоте
помехи и последующих тригонометрических
преобразованиях получим выражения для
упомянутых амплитуд напряжений
соответствующих гармоник спектра,
коэффициентов и параметров нелинейности:
,
(2)
,
(3)
,
(4)
,
(5)
,
(6)
где
– амплитуда полезного выходного сигнала;
– (7)
– постоянная составляющая коэффициента усиления, определяемая как нулевая гармоника ряда Фурье;
– амплитуда
комбинационной составляющей третьего
порядка, изменяющаяся с частотой
или
;
– коэффициент
интермодуляционных помех 3-го порядка;
–
(8)
– вторая гармоника ряда Фурье, ответственная за образование комбинационных помех 3-го порядка;
– (9)
– полином,
аппроксимирующий экспериментальную
функцию, выражающую коэффициент усиления
в рабочей точке усилителя
.
;
;
– (10)
– вторые
производные по напряжению
от
,
,
,
соответственно;
,
,
и т.д. – коэффициенты усиления, их
крутизна, кривизна и т.д. в рабочей точке,
которые находятся как коэффициенты
аппроксимирующего полинома;
– обобщенный
параметр нелинейности третьего порядка,
который в малосигнальном режиме (Uс
<< Uп)
не зависит от входного сигнала, а
определяется значением коэффициента
усиления
и его производными в рабочей
точке
.
(11)
Следовательно,
параметр нелинейности
,
зависящий от второй производной
малосигнального коэффициента усиления
в любой рабочей точке
,
является определяющим в оценке нелинейных
свойств усилителя по интермодуляции
3-го порядка. Чем более
стремится к нулю (т.е.
),
тем меньше коэффициент интермодуляции
3-го порядка
,
иначе тем более линейным является
усилительный прибор (транзистор).
Коэффициент
в формуле (6), определяющий степень
блокирования малого сигнала помехой
большого уровня, как следует из формулы
(7), в соответствующей рабочей точке
зависит только от уровня помехи.