Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по математике.docx
Скачиваний:
14
Добавлен:
07.09.2019
Размер:
116.46 Кб
Скачать

15 Неограниченные решения

В некоторых задачах ЛП значения переменных могут неограниченно возрастать без нарушения ограничений. Это говорит о том, что пространство допустимых решений не ограничено по крайней мере по одному направлению. В результате этого целевая функция может возрастать (задача максимизации) или убывать (задача минимизации) неограниченно.

Неограниченность решения задачи свидетельствует только об одном: модель разработана не достаточно корректно. Типичные ошибки, приводящие к построению таких моделей, заключаются в том, что не учитываются ограничения, не являющиеся избыточными, и не точно оцениваются параметры (коэффициенты) ограничений.

Отсутствие допустимых решений

Если ограничения задачи ЛП несовместны (т.е. они не могут выполняться одновременно), то задача не имеет допустимых решений. Такая ситуация не может возникнуть, если все неравенства, составляющие систему ограничений, имеют тип "<" с неотрицательными правыми частями, так как в этом случае дополнительные переменные могут составить допустимое решение. Для других типов ограничений используются искусственные переменные. И хотя в оптимальном решении все искусственные переменные в силу штрафов равны нулю, такой исход возможен только тогда, когда задача имеет непустое пространство допустимых решений. В противном случае в оптимальном решении будет присутствовать хотя бы одна положительная искусственная переменная.

16 НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ — раздел математического программирования, изучающий методы решения экстремальных задач с нелинейной целевой функцией и (или) областью допустимых решений, определенной нелинейными ограничениями.

ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ — раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные на вычислении последствий каждого решения и выработке оптимальной стратегии для последующих решений.

Модели теории оптимального управления – одни из важных в оптимизационных моделях. Математическая теория оптимального управления относится к одной из теорий, имеющих важные практические применения, в основном, для оптимального управления процессами.

Различают три вида математических моделей теории оптимального управления. К первому виду относятся дискретные модели оптимального управления. Традиционно такие модели называют моделями динамического программирования. Широко известен метод динамического программирования Беллмана. Ко второму типу относятся модели, описываемые задачам Коши для систем обыкновенных дифференциальных уравнений. Их часто называют моделями оптимального управления системами с сосредоточенными параметрами. Третий вид моделей описывается краевыми задачами, как для обыкновенных дифференциальных уравнений, так и для уравнений в частных производных. Такие модели называют моделями оптимального управления системами с распределенными параметрами.

17 БЕЛЛМАНА ПРИНЦИП ОПТИМАЛЬНОСТИ [Bellman’s optimality principle] — важнейшее положение динамического программирования, которое гласит: оптимальное поведение в задачах динамического программирования обладает тем свойством, что каковы бы ни были первоначальное состояние и решение (т. е. “управление”), последующие решения должны составлять оптимальное поведение относительно состояния, получающегося в результате первого решения. Этот принцип можно выразить и рассуждая от противного: если не использовать наилучшим образом то, чем мы располагаем сейчас, то и в дальнейшем не удастся наилучшим образом распорядиться тем, что мы могли бы иметь.

Следовательно, если имеется оптимальная траектория, то и любой ее участок представляет собой оптимальную траекторию. Этот принцип позволяет сформулировать эффективный метод решения широкого класса многошаговых задач. (Подробнее см. Динамическое программирование.)

Принцип назван по имени крупного американского математика Р. Беллмана, одного из основоположников динамического программирования.

Последовательность чисел или функций, в которой каждый следующий член выражается через предыдущий, называется рекуррентной, а формулы, устанавливающие эту связь, - рекуррентными соотношениями. Рекуррентные соотношения удобно использовать при составлении алгоритмов вычисления величин, при этом нет необходимости хранить все промежуточные значения. В выражении следующего значения некоторой величины через ее предыдущие значения и состоит суть метода рекуррентных соотношений.

Если последовательность чисел или функций конечна, то для нахождения значений функций (например, суммы, произведения или n-ого члена ) используется арифметический цикл, т.е. цикл, в котором заранее известно число повторений. Трудность при решении таких задач представляет нахождение самой рекуррентной формулы. Я предлагаю ученикам общий подход к получению рекуррентной формулы, опираясь на метод математической индукции.

18 МАРКОВСКИЙ ПРОЦЕСС— дискретный или непрерывный случайный процесс X(t), который можно полностью задать с помощью двух величин: вероятности P(x,t) того, что случайная величина x(t) в момент времени t равна x, и вероятности P(x2, t2|x1,t1) того, что если x при t = t1 равен x1, то при t = t2 он равен x2. Вторая из этих величин называется вероятностью перехода из состояния x1 при t = t1 в состояние x2 при t = t2. Пример матрицы переходных вероятностей Маркова см. в ст. “Матрица”.

Дискретные по времени и значению М. п. называют цепями Маркова.

Выделение М. п. в отдельный класс связано с тем, что многие реальные процессы (напр., в теории массового обслуживания) могут с хорошей точностью считаться марковскими. Кроме того, их часто можно исследовать гораздо подробнее, чем другие более сложные случайные процессы.

Модели сетевого планирования и управления (модели СПУ) предназначены для планирования и управления сложными комплексами работ (проектами), направленными на достижение определенной цели в заданные сроки (строительство, разработка и производство сложных объектов и др.).

В экономических исследованиях сетевые модели возникают при моделировании экономических процессов методами сетевого планирования и управления (СПУ).

Объектом управления в системах сетевого планирования и управления являются коллективы исполнителей, располагающих определенными ресурсами и выполняющих определенный комплекс операций, который призван обеспечить достижение намеченной цели, например, разработку нового изделия, строительства объекта и т.п.

Основой сетевого планирования и управления является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий, отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы.

Основные понятия сетевой модели:

  • событие,

  • работа

  • путь.

Сети Петри — математический аппарат для моделирования динамических дискретных систем. Впервые описаны Карлом Петри в 1984 году.

Сеть Петри представляет собой двудольный ориентированный граф, состоящий из вершин двух типов — позиций и переходов, соединённых между собой дугами, вершины одного типа не могут быть соединены непосредственно. В позициях могут размещаться метки (маркеры), способные перемещаться по сети.

Событием называют срабатывание перехода, при котором метки из входных позиций этого перехода перемещаются в выходные позиции. События происходят мгновенно, либо разновременно, при выполнении некоторых условий.

СЕТЕВОЙ ГРАФИК — граф типа сеть, в котором фиксируется комплекс работ (операций) и событий, отражая их технологическую последовательность и связь в процессе достижения цели; основной инструмент систем сетевого планирования и управления.

19 МАТРИЧНЫЕ ИГРЫ — класс антагонистических игр, в которых участвуют два игрока, причем каждый игрок располагает конечным числом стратегий. Если один игрок имеет m стратегий, а второй — n, то можно построить матрицу игры размерностью m × n. М. и. могут иметь седловую точку, но могут и не иметь ее. В последнем случае решение игры в чистых стратегиях невозможно и оптимальные стратегии игроков отыскиваются среди их смешанных стратегий. М. и. для нахождения таких стратегий удобно преобразовывать в задачи линейного программирования.

КООПЕРАТИВНЫЕ ИГРЫ — класс игр с ненулевой суммой, в которых игроки могут принимать решения по согласованию друг с другом, вправе вступать в коалиции. Однако термины “К. и.” и “коалиционные игры” не совпадают, поскольку К. и. может и не содержать коалиций.

НЕКООПЕРАТИВНЫЕ ИГРЫ — класс игр (с числом участников не менее трех), в которых игроки принимают решения независимо друг от друга потому, что либо согласование запрещено правилами игры, либо осуществление соглашения невозможно. Одно из решений Н. и. заключается в определении точки (или точек) равновесия игры (равновесия Нэша), где ни один из игроков не имеет причин отказываться от своей стратегии независимых действий. Возможно также применение принципов максимина, максимакса и др.

ИГРА С “ПРИРОДОЙ” — игра, в которой имеется только один игрок, причем исход ее зависит не только от его решений, но и от состояния “природы”, т. е. не от сознательно противодействующего противника, но от объективной, невраждебной действительности. Платежная матрица в этом случае похожа на показанную в ст. “Матрица игры”, но здесь игрок X — это лицо, принимающее одно из m различных возможных решений, а игрок Y — “природа”, принимающая n возможных состояний. При выборе решения игроком X могут использоваться различные критерии, напр.:

критерий Лапласа (“принцип недостаточного основания”), предполагающий, что все состояния одинаково вероятны, поэтому следует выбирать такую стратегию, которая максимизирует средний выигрыш по строке;

принцип максимакса, предполагающий, что Y — это доброжелательный партнер, поэтому следует выбирать строку с наибольшим из всех максимальных элементов по столбцам;

критерий максимаксного сожаления (риска), при котором любое решение сопоставляется с тем решением, которое было бы принято, если бы было известно состояние “природы”.