- •Электрический заряд, его свойства, закон Кулона.
- •Напряженность электрического поля. Свойства линий напряженности электрического поля.
- •Линии напряженности
- •Картины силовых линий
- •Принцип суперпозиции. Поле диполя.
- •Поток вектора напряженности. Теорема Гаусса.
- •Теорема Остроградского-Гаусса для электростатического поля.
- •Работа сил электростатического поля при перемещении зарядов. Циркуляция вектора напряженности.
- •Потенциал, разность потенциалов. Эквипотенциальные поверхности. Связь между напряженностью и потенциалом.
- •Полярные и неполярные диэлектрики. Поляризация диэлектриков. Вектор поляризации.
- •Электрическое поле в диэлектрике. Диэлектрические проницаемость и восприимчивость.
- •Теорема Гаусса для электростатического поля в диэлектрике. Вектор электрического смещения.
- •Распределение зарядов в проводнике. Проводник во внешнем электрическом поле. Электростатическая защита.
- •Электрическая емкость еудиненного проводника. Конденсаторы.
- •Энергия заряженных проводников и электростатического поля.
- •Основные характеристики электричесого тока. Уравнение непрерывности.
- •Гидродинамика
- •Квантовая механика
- •Основы классической теории электропроводимости металлов.
- •Электрродвидущая сила. Закон Ома для неоднородного участка цепи.
- •Работа и мощность постоянного тока. Тепловое действие тока. Закон Джоуля-Ленца.
- •Магнитное поле. Действие магнитного поля на движущиеся заряженные частицы. Сила Лоренца. Магнитное поле движущихся зарядов.
- •Применение силы Лоренца
- •В электроприборах
- •В ускорителях заряженных частиц
- •Графическое изображение магнитных полей. Магнитный поток. Закон ампера. Взаимодействие параллельных токов.
- •Принцеп суперпозиции магнитных полей. Закон Био-Савара-Лапласа. Магнитное поле прямого тока (вывод). Магнитное поле кругового тока.
- •34. Применение закона Био-Савара-Лапласса для расчета магнитных полей.
- •Работа, совершаемая при перемещении проводника и контура с током в магнитном поле.
- •Закон полного тока для магнитного поля. Магнитное поле соленоида и торойда.
- •Движение заряженный частиц в продольном и поперечном электрическом поле.
- •Движение заряженных частив в однородном магнитном поле. Движение заряженных частиц в однородном магнитном поле
- •Магнитное поле в веществе. Магнитные моменты в атоме. Атом в магнитном поле. Теорема Лармора.
- •Закон полного тока для магнитного поля в веществе.
- •Электромагнитная индукция. Закон фарадея для эдс индукции. Правила Ленца.
- •Эдс индукции, возникающая на концах проводника при его движении в магнитном поле.
- •Индуктивность контура. Явление самоиндукции, индуктивность соленоида.
- •Ток при размыкании и замыкании цепи.
Работа, совершаемая при перемещении проводника и контура с током в магнитном поле.
На
проводник с током в магнитном поле
действуют силы, которые определяются
с помощью закона Ампера. Если проводник
не закреплен (например, одна из сторон
контура сделана в виде подвижной
перемычки, рис. 1), то под действием силы
Ампера он в магнитном поле будет
перемещаться. Значит, магнитное поле
совершает работу по перемещению
проводника с током.
Для
вычисления этой работы рассмотрим
проводник длиной l с
током I (он может свободно двигаться),
который помещен в однородное внешнее
магнитное поле, которое перпендикулярно
плоскости контура. Сила, направление
которой определяется по правилу левой
руки, а значение — по закону Ампера,
рассчитывается по формуле
Под
действием данной силы проводник
передвинется параллельно самому себе
на отрезок dx из положения 1 в положение
2. Работа, которая совершается магнитным
полем, равна
так
как ldx=dS
— площадь, которую пересекает проводник
при его перемещении в магнитном поле,
BdS=dФ — поток вектора магнитной индукции,
который пронизывает эту площадь.
Значит,
(1)
т.
е. работа по перемещению проводника с
током в магнитном поле равна произведению
силы тока на магнитный поток, пересеченный
движущимся проводником. Данная формула
справедлива и для произвольного
направления вектора В.
Рассчитаем
работу по перемещению замкнутого контура
с постоянным током I в магнитном поле.
Будем считать, что контур М перемещается
в плоскости чертежа и в результате
бесконечно малого перемещения перейдет
в положение М', изображенное на рис. 2
штриховой линией. Направление тока в
контуре (по часовой стрелке) и магнитного
поля (перпендикулярно плоскости чертежа
— за чертеж или от нас) дано на рисунке.
Контур М условно разобьем на два
соединенных своими концами проводника:
AВС и CDА.
Работа
dA, которая совершается силами Ампера
при иссследуемом перемещении контура
в магнитном поле, равна алгебраической
сумме работ по перемещению проводников
AВС (dA1)
и CDA (dA2),
т. е.
(2)
Силы,
которые приложенны к участку CDA контура,
образуют острые углы с направлением
перемещения, поэтому совершаемая ими
работа dA2>0.
.Используя (1), находим, эта работа равна
произведению силы тока I в нашем контуре
на пересеченный проводником CDA магнитный
поток. Проводник CDA пересекает при своем
движении поток dФ0 сквозь
поверхность, выполненную в цвете, и
поток dФ2,
который пронизывает контур в его конечном
положении. Значит,
(3)
Силы,
которые действуют на участок AВС контура,
образуют тупые углы с направлением
перемещения, значит совершаемая ими
работа dA1<0.
Проводник AВС пересекает при своем
движении поток dФ0 сквозь
поверхность, выполненную в цвете, и
поток dФ1, который пронизывает контур в
начальном положении. Значит,
(4)
Подставляя
(3) и (4) в (2), найдем выражение для
элементарной работы:
где
dФ2—dФ1=dФ'
— изменение магнитного потока сквозь
площадь, которая ограничена контуром
с током. Таким образом,
(5)
Проинтегрировав
выражение (5), найдем работу, которая
совершается силами Ампера, при конечном
произвольном перемещении контура в
магнитном поле:
(6)
значит,
работа по перемещению замкнутого контура
с током в магнитном поле равна произведению
силы тока в контуре на изменение
магнитного потока, сцепленного с
контуром. Выражение (6) верно для контура
любой формы в произвольном магнитном
поле.
