
Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:Кодирование.doc
X
- •Глава 3. Кодирование символьной информации
- •3.1. Постановка задачи кодирования. Первая теорема Шеннона
- •3.2. Способы построения двоичных кодов 3.2.1. Алфавитное неравномерное двоичное кодирование сигналами равной длительности. Префиксные коды
- •3.2.2. Равномерное алфавитное двоичное кодирование. Байтовый код
- •3.2.3. Алфавитное кодирование с неравной длительностью элементарных сигналов. Код Морзе
- •3.2.4. Блочное двоичное кодирование
- •Глава 6. Кодирование
- •6.1 Алфавитное кодирование
- •6.1.1. Префикс и постфикс слова
- •6.1.2. Таблица кодов
- •6.1.3. Разделимые схемы
- •6.1.4. Префиксные схемы
- •6.1.5. Неравенства Макмиллана
- •6.2. Кодирование с минимальной избыточностью
- •6.2.1. Минимизация длины кода сообщения
- •6.2.2. Цена кодирвания
- •6.2.3. Алгоритм Фано
- •6.2.4. Оптимальное кодирование
- •6.2.5. Алгоритм Хаффмана
- •6.3. Помехоустойчивое кодирование
- •6.3.1. Кодирование с исправлением ошибок
- •6.3.2. Классификация ошибок
- •6.3.3. Возможность исправления всех ошибок
- •6.3.4. Кодовое расстояние
6.3.4. Кодовое расстояние
Неотрицательная функция d(x,
y): МхМ
называется расстоянием (или метрикой)
на множестве М, если выполнены следующие
условия (аксиомы метрики):
1.
2.
3.
Пусть
Эта функция называется расстоянием Хэмминга.
ЗАМЕЧАНИЕ
Мы рассматриваем симметричные ошибки,
то есть если в канале допустима ошибка
0
,
то допустима и ошибка 1
0.
Введенная функция
является расстоянием. Действительно:
1.
,
поскольку ошибки симметричны, и из
последовательности
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]