
- •1. Начинаем
- •1.1. Решение задачи
- •1.2. Программа на языке C++
- •1.2.1. Порядок выполнения инструкций
- •1.3. Директивы препроцессора
- •1.4. Немного о комментариях
- •1.5. Первый взгляд на ввод/вывод
- •1.5.1. Файловый ввод/вывод
- •2. Краткий обзор С++
- •2.1. Встроенный тип данных “массив”
- •2.2. Динамическое выделение памяти и указатели
- •2.3. Объектный подход
- •2.4. Объектно-ориентированный подход
- •2.5. Использование шаблонов
- •2.6. Использование исключений
- •2.7. Использование пространства имен
- •2.8. Стандартный массив – это вектор
- •3. Типы данных С++
- •3.1. Литералы
- •3.2. Переменные
- •3.2.1. Что такое переменная
- •3.2.2. Имя переменной
- •3.2.3. Определение объекта
- •3.3. Указатели
- •3.4. Строковые типы
- •3.4.1. Встроенный строковый тип
- •3.4.2. Класс string
- •3.5. Спецификатор const
- •3.6. Ссылочный тип
- •3.7. Тип bool
- •3.8. Перечисления
- •3.9. Тип “массив”
- •3.9.1. Многомерные массивы
- •3.9.2. Взаимосвязь массивов и указателей
- •3.10. Класс vector
- •3.11. Класс complex
- •3.12. Директива typedef
- •3.13. Спецификатор volatile
- •3.14. Класс pair
- •3.15. Типы классов
- •4. Выражения
- •4.1. Что такое выражение?
- •4.2. Арифметические операции
- •4.3. Операции сравнения и логические операции
- •4.4. Операции присваивания
- •4.5. Операции инкремента и декремента
- •4.6. Операции с комплексными числами
- •4.7. Условное выражение
- •4.8. Оператор sizeof
- •4.9. Операторы new и delete
- •4.10. Оператор “запятая”
- •4.11. Побитовые операторы
- •4.12. Класс bitset
- •4.13. Приоритеты
- •4.14. Преобразования типов
- •4.14.1. Неявное преобразование типов
- •4.14.2. Арифметические преобразования типов
- •4.14.3. Явное преобразование типов
- •4.14.4. Устаревшая форма явного преобразования
- •4.15. Пример: реализация класса Stack
- •5. Инструкции
- •5.1. Простые и составные инструкции
- •5.2. Инструкции объявления
- •5.3. Инструкция if
- •5.4. Инструкция switch
- •5.5. Инструкция цикла for
- •5.6. Инструкция while
- •5.8. Инструкция do while
- •5.8. Инструкция break
- •5.9. Инструкция continue
- •5.10. Инструкция goto
- •5.11. Пример связанного списка
- •5.11.1. Обобщенный список
- •6. Абстрактные контейнерные типы
- •6.1. Система текстового поиска
- •6.2. Вектор или список?
- •6.3. Как растет вектор?
- •6.4. Как определить последовательный контейнер?
- •6.5. Итераторы
- •6.6. Операции с последовательными контейнерами
- •6.6.1. Удаление
- •6.6.2. Присваивание и обмен
- •6.6.3. Обобщенные алгоритмы
- •6.7. Читаем текстовый файл
- •6.8. Выделяем слова в строке
- •6.9. Обрабатываем знаки препинания
- •6.10. Приводим слова к стандартной форме
- •6.11. Дополнительные операции со строками
- •6.12. Строим отображение позиций слов
- •6.12.1. Определение объекта map и заполнение его элементами
- •6.12.2. Поиск и извлечение элемента отображения
- •6.12.3. Навигация по элементам отображения
- •6.12.4. Словарь
- •6.12.5. Удаление элементов map
- •6.13. Построение набора стоп-слов
- •6.13.1. Определение объекта set и заполнение его элементами
- •6.13.2. Поиск элемента
- •6.13.3. Навигация по множеству
- •6.14. Окончательная программа
- •6.15. Контейнеры multimap и multiset
- •6.16. Стек
- •6.17. Очередь и очередь с приоритетами
- •6.18. Вернемся в классу iStack
- •7. Функции
- •7.1. Введение
- •7.2. Прототип функции
- •7.2.1. Тип возвращаемого функцией значения
- •7.2.2. Список параметров функции
- •7.2.3. Проверка типов формальных параметров
- •7.3. Передача аргументов
- •7.3.1. Параметры-ссылки
- •7.3.2. Параметры-ссылки и параметры-указатели
- •7.3.3. Параметры-массивы
- •7.3.4. Абстрактные контейнерные типы в качестве параметров
- •7.3.5. Значения параметров по умолчанию
- •7.3.6. Многоточие
- •7.4. Возврат значения
- •7.4.1. Передача данных через параметры и через глобальные объекты
- •7.5. Рекурсия
- •7.6. Встроенные функции
- •7.7. Директива связывания extern "C" A
- •7.8. Функция main(): разбор параметров командной строки
- •7.8.1. Класс для обработки параметров командной строки
- •7.9. Указатели на функции
- •7.9.1. Тип указателя на функцию
- •7.9.2. Инициализация и присваивание
- •7.9.3. Вызов
- •7.9.4. Массивы указателей на функции
- •7.9.5. Параметры и тип возврата
- •7.9.6. Указатели на функции, объявленные как extern "C"
- •8. Область видимости и время жизни
- •8.1. Область видимости
- •8.1.1. Локальная область видимости
- •8.2. Глобальные объекты и функции
- •8.2.1. Объявления и определения
- •8.2.2. Сопоставление объявлений в разных файлах
- •8.2.3. Несколько слов о заголовочных файлах
- •8.3. Локальные объекты
- •8.3.1. Автоматические объекты
- •8.3.2. Регистровые автоматические объекты
- •8.3.3. Статические локальные объекты
- •8.4. Динамически размещаемые объекты
- •8.4.1. Динамическое создание и уничтожение единичных объектов
- •8.4.2. Шаблон auto_ptr А
- •8.4.3. Динамическое создание и уничтожение массивов
- •8.4.4. Динамическое создание и уничтожение константных объектов
- •8.4.5. Оператор размещения new А
- •8.5. Определения пространства имен А
- •8.5.1. Определения пространства имен
- •8.5.2. Оператор разрешения области видимости
- •8.5.3. Вложенные пространства имен
- •8.5.4. Определение члена пространства имен
- •8.5.5. ПОО и члены пространства имен
- •8.5.6. Безымянные пространства имен
- •8.6. Использование членов пространства имен А
- •8.6.1. Псевдонимы пространства имен
- •8.6.2. Using-объявления
- •8.6.3. Using-директивы
- •8.6.4. Стандартное пространство имен std
- •9. Перегруженные функции
- •9.1. Объявления перегруженных функций
- •9.1.1. Зачем нужно перегружать имя функции
- •9.1.2. Как перегрузить имя функции
- •9.1.3. Когда не надо перегружать имя функции
- •9.1.4. Перегрузка и область видимости A
- •9.1.5. Директива extern "C" и перегруженные функции A
- •9.1.6. Указатели на перегруженные функции A
- •9.1.7. Безопасное связывание A
- •9.2. Три шага разрешения перегрузки
- •9.3. Преобразования типов аргументов A
- •9.3.1. Подробнее о точном соответствии
- •9.3.2. Подробнее о расширении типов
- •9.3.3. Подробнее о стандартном преобразовании
- •9.3.4. Ссылки
- •9.4. Детали разрешения перегрузки функций
- •9.4.1. Функции-кандидаты
- •9.4.2. Устоявшие функции
- •9.4.3. Наилучшая из устоявших функция
- •9.4.4. Аргументы со значениями по умолчанию
- •10. Шаблоны функций
- •10.1. Определение шаблона функции
- •10.2. Конкретизация шаблона функции
- •10.3. Вывод аргументов шаблона А
- •10.4. Явное задание аргументов шаблона A
- •10.5. Модели компиляции шаблонов А
- •10.5.1. Модель компиляции с включением
- •10.5.2. Модель компиляции с разделением
- •10.5.3. Явные объявления конкретизации
- •10.6. Явная специализация шаблона А
- •10.7. Перегрузка шаблонов функций А
- •10.8. Разрешение перегрузки при конкретизации A
- •10.9. Разрешение имен в определениях шаблонов А
- •10.10. Пространства имен и шаблоны функций А
- •10.11. Пример шаблона функции
- •11. Обработка исключений
- •11.1. Возбуждение исключения
- •11.2. try-блок
- •11.3. Перехват исключений
- •11.3.1. Объекты-исключения
- •11.3.2. Раскрутка стека
- •11.3.3. Повторное возбуждение исключения
- •11.3.4. Перехват всех исключений
- •11.4. Спецификации исключений
- •11.4.1. Спецификации исключений и указатели на функции
- •11.5. Исключения и вопросы проектирования
- •12. Обобщенные алгоритмы
- •12.1. Краткий обзор
- •12.2. Использование обобщенных алгоритмов
- •12.3. Объекты-функции
- •12.3.1. Предопределенные объекты-функции
- •12.3.3. Сравнительные объекты-функции
- •12.3.4. Логические объекты-функции
- •12.3.5. Адаптеры функций для объектов-функций
- •12.3.6. Реализация объекта-функции
- •12.4. Еще раз об итераторах
- •12.4.1. Итераторы вставки
- •12.4.2. Обратные итераторы
- •12.4.3. Потоковые итераторы
- •12.4.4. Итератор istream_iterator
- •12.4.5. Итератор ostream_iterator
- •12.4.6. Пять категорий итераторов
- •12.5. Обобщенные алгоритмы
- •12.5.1. Алгоритмы поиска
- •12.5.2. Алгоритмы сортировки и упорядочения
- •12.5.3. Алгоритмы удаления и подстановки
- •12.5.4. Алгоритмы перестановки
- •12.5.5. Численные алгоритмы
- •12.5.6. Алгоритмы генерирования и модификации
- •12.5.7. Алгоритмы сравнения
- •12.5.8. Алгоритмы работы с множествами
- •12.5.9. Алгоритмы работы с хипом
- •12.6.1. Операция list_merge()
- •12.6.2. Операция list::remove()
- •12.6.3. Операция list::remove_if()
- •12.6.4. Операция list::reverse()
- •12.6.5. Операция list::sort()
- •12.6.6. Операция list::splice()
- •12.6.7. Операция list::unique()
- •13. Классы
- •13.1. Определение класса
- •13.1.1. Данные-члены
- •13.1.2. Функции-члены
- •13.1.3. Доступ к членам
- •13.1.4. Друзья
- •13.1.5. Объявление и определение класса
- •13.2. Объекты классов
- •13.3. Функции-члены класса
- •13.3.1. Когда использовать встроенные функции-члены
- •13.3.2. Доступ к членам класса
- •13.3.3. Закрытые и открытые функции-члены
- •13.3.4. Специальные функции-члены
- •13.3.5. Функции-члены со спецификаторами const и volatile
- •13.3.6. Объявление mutable
- •13.4. Неявный указатель this
- •13.4.1. Когда использовать указатель this
- •13.5. Статические члены класса
- •13.5.1. Статические функции-члены
- •13.6. Указатель на член класса
- •13.6.1. Тип члена класса
- •13.6.2. Работа с указателями на члены класса
- •13.6.3. Указатели на статические члены класса
- •13.7. Объединение – класс, экономящий память
- •13.8. Битовое поле – член, экономящий память
- •13.9. Область видимости класса A
- •13.9.1. Разрешение имен в области видимости класса
- •13.10. Вложенные классы A
- •13.10.1. Разрешение имен в области видимости вложенного класса
- •13.11. Классы как члены пространства имен A
- •13.12. Локальные классы A
- •14. Инициализация, присваивание и уничтожение класса
- •14.1. Инициализация класса
- •14.2. Конструктор класса
- •14.2.1. Конструктор по умолчанию
- •14.2.2. Ограничение прав на создание объекта
- •14.2.3. Копирующий конструктор
- •14.3. Деструктор класса
- •14.3.1. Явный вызов деструктора
- •14.3.2. Опасность увеличения размера программы
- •14.4. Массивы и векторы объектов
- •14.4.1. Инициализация массива, распределенного из хипа A
- •14.4.2. Вектор объектов
- •14.5. Список инициализации членов
- •14.6. Почленная инициализация A
- •14.6.1. Инициализация члена, являющегося объектом класса
- •14.7. Почленное присваивание A
- •14.8. Соображения эффективности A
- •15. Перегруженные операторы и определенные пользователем преобразования
- •15.1. Перегрузка операторов
- •15.1.1. Члены и не члены класса
- •15.1.2. Имена перегруженных операторов
- •15.1.3. Разработка перегруженных операторов
- •15.2. Друзья
- •15.3. Оператор =
- •15.4. Оператор взятия индекса
- •15.5. Оператор вызова функции
- •15.6. Оператор “стрелка”
- •15.7. Операторы инкремента и декремента
- •15.8. Операторы new и delete
- •15.8.1. Операторы new[ ] и delete [ ]
- •15.8.2. Оператор размещения new() и оператор delete()
- •15.9. Определенные пользователем преобразования
- •15.9.1. Конвертеры
- •15.9.2. Конструктор как конвертер
- •15.10. Выбор преобразования A
- •15.10.1. Еще раз о разрешении перегрузки функций
- •15.10.2. Функции-кандидаты
- •15.10.3. Функции-кандидаты для вызова функции в области видимости класса
- •15.10.4. Ранжирование последовательностей определенных пользователем преобразований
- •15.11. Разрешение перегрузки и функции-члены A
- •15.11.1. Объявления перегруженных функций-членов
- •15.11.2. Функции-кандидаты
- •15.11.3. Устоявшие функции
- •15.12. Разрешение перегрузки и операторы A
- •15.12.1. Операторные функции-кандидаты
- •15.12.2. Устоявшие функции
- •15.12.3. Неоднозначность
- •16. Шаблоны классов
- •16.1. Определение шаблона класса
- •16.1.1. Определения шаблонов классов Queue и QueueItem
- •16.2. Конкретизация шаблона класса
- •16.2.1. Аргументы шаблона для параметров-констант
- •16.3. Функции-члены шаблонов классов
- •16.3.1. Функции-члены шаблонов Queue и QueueItem
- •16.4. Объявления друзей в шаблонах классов
- •16.4.1. Объявления друзей в шаблонах Queue и QueueItem
- •16.5. Статические члены шаблонов класса
- •16.6. Вложенные типы шаблонов классов
- •16.7. Шаблоны-члены
- •16.8. Шаблоны классов и модель компиляции A
- •16.8.1. Модель компиляции с включением
- •16.8.2. Модель компиляции с разделением
- •16.8.3. Явные объявления конкретизации
- •16.9. Специализации шаблонов классов A
- •16.10. Частичные специализации шаблонов классов A
- •16.11. Разрешение имен в шаблонах классов A
- •16.12. Пространства имен и шаблоны классов
- •16.13. Шаблон класса Array
- •17. Наследование и подтипизация классов
- •17.1. Определение иерархии классов
- •17.1.1. Объектно-ориентированное проектирование
- •17.2. Идентификация членов иерархии
- •17.2.1. Определение базового класса
- •17.2.2. Определение производных классов
- •17.2.3. Резюме
- •17.3. Доступ к членам базового класса
- •17.4. Конструирование базового и производного классов
- •17.4.1. Конструктор базового класса
- •17.4.2. Конструктор производного класса
- •17.4.3. Альтернативная иерархия классов
- •17.4.4. Отложенное обнаружение ошибок
- •17.4.5. Деструкторы
- •17.5. Виртуальные функции в базовом и производном классах
- •17.5.1. Виртуальный ввод/вывод
- •17.5.2. Чисто виртуальные функции
- •17.5.3. Статический вызов виртуальной функции
- •17.5.4. Виртуальные функции и аргументы по умолчанию
- •17.5.5. Виртуальные деструкторы
- •17.5.6. Виртуальная функция eval()
- •17.5.7. Почти виртуальный оператор new
- •17.5.8. Виртуальные функции, конструкторы и деструкторы
- •17.6. Почленная инициализация и присваивание A
- •17.7. Управляющий класс UserQuery
- •17.7.1. Определение класса UserQuery
- •17.8. Соберем все вместе
- •18. Множественное и виртуальное наследование
- •18.1. Готовим сцену
- •18.2. Множественное наследование
- •18.3. Открытое, закрытое и защищенное наследование
- •18.3.1. Наследование и композиция
- •18.3.2. Открытие отдельных членов
- •18.3.3. Защищенное наследование
- •18.3.4. Композиция объектов
- •18.4. Область видимости класса и наследование
- •18.4.1. Область видимости класса при множественном наследовании
- •18.5. Виртуальное наследование A
- •18.5.1. Объявление виртуального базового класса
- •18.5.2. Специальная семантика инициализации
- •18.5.3. Порядок вызова конструкторов и деструкторов
- •18.5.4. Видимость членов виртуального базового класса
- •18.6. Пример множественного виртуального наследования A
- •18.6.1. Порождение класса, контролирующего выход за границы массива
- •18.6.2. Порождение класса отсортированного массива
- •18.6.3. Класс массива с множественным наследованием
- •19. Применение наследования в C++
- •19.1. Идентификация типов во время выполнения
- •19.1.1. Оператор dynamic_cast
- •19.1.2. Оператор typeid
- •19.1.3. Класс type_info
- •19.2. Исключения и наследование
- •19.2.1. Исключения, определенные как иерархии классов
- •19.2.2. Возбуждение исключения типа класса
- •19.2.3. Обработка исключения типа класса
- •19.2.4. Объекты-исключения и виртуальные функции
- •19.2.5. Раскрутка стека и вызов деструкторов
- •19.2.6. Спецификации исключений
- •19.2.7. Конструкторы и функциональные try-блоки
- •19.2.8. Иерархия классов исключений в стандартной библиотеке C++
- •19.3. Разрешение перегрузки и наследование A
- •19.3.1. Функции-кандидаты
- •19.3.2. Устоявшие функции и последовательности пользовательских преобразований
- •19.3.3. Наилучшая из устоявших функций
- •20. Библиотека iostream
- •20.1. Оператор вывода <<
- •20.2. Ввод
- •20.2.1. Строковый ввод
- •20.3. Дополнительные операторы ввода/вывода
- •20.4. Перегрузка оператора вывода
- •20.5. Перегрузка оператора ввода
- •20.6. Файловый ввод/вывод
- •20.7. Состояния потока
- •20.8. Строковые потоки
- •20.9. Состояние формата
- •20.10. Сильно типизированная библиотека
- •21. Обобщенные алгоритмы в алфавитном порядке
- •Алгоритм accumulate()
- •Алгоритм adjacent_difference()
- •Алгоритм adjacent_find()
- •Алгоритм binary_search()
- •Алгоритм copy()
- •Алгоритм copy_backward()
- •Алгоритм count()
- •Алгоритм count_if()
- •Алгоритм equal()
- •Алгоритм equal_range()
- •Алгоритм fill()
- •Алгоритм fill_n()
- •Алгоритм find()
- •Алгоритм find_if()
- •Алгоритм find_end()
- •Алгоритм find_first_of()
- •Алгоритм for_each()
- •Алгоритм generate()
- •Алгоритм generate_n()
- •Алгоритм includes()
- •Алгоритм inner_product()
- •Алгоритм inplace_merge()
- •Алгоритм iter_swap()
- •Алгоритм lexicographical_compare()
- •Алгоритм lower_bound()
- •Алгоритм max()
- •Алгоритм max_element()
- •Алгоритм min()
- •Алгоритм min_element()
- •Алгоритм merge()
- •Алгоритм mismatch()
- •Алгоритм next_permutation()
- •Алгоритм nth_element()
- •Алгоритм partial_sort()
- •Алгоритм partial_sort_copy()
- •Алгоритм partial_sum()
- •Алгоритм partition()
- •Алгоритм prev_permutation()
- •Алгоритм random_shuffle()
- •Алгоритм remove()
- •Алгоритм remove_copy()
- •Алгоритм remove_if()
- •Алгоритм remove_copy_if()
- •Алгоритм replace()
- •Алгоритм replace_copy()
- •Алгоритм replace_if()
- •Алгоритм replace_copy_if()
- •Алгоритм reverse()
- •Алгоритм reverse_copy()
- •Алгоритм rotate()
- •Алгоритм rotate_copy()
- •Алгоритм search()
- •Алгоритм search_n()
- •Алгоритм set_difference()
- •Алгоритм set_intersection()
- •Алгоритм set_symmetric_difference()
- •Алгоритм set_union()
- •Алгоритм sort()
- •Алгоритм stable_partition()
- •Алгоритм stable_sort()
- •Алгоритм swap()
- •Алгоритм swap_ranges()
- •Алгоритм transform()
- •Алгоритм unique()
- •Алгоритм unique_copy()
- •Алгоритм upper_bound()
- •Алгоритмы для работы с хипом
- •Алгоритм make_heap()
- •Алгоритм pop_heap()
- •Алгоритм push_heap()
- •Алгоритм sort_heap()

Прочитайте из стандартного ввода последовательность данных таких типов: string, double, string, int, string. Каждый раз проверяйте, не было ли ошибки чтения.
Упражнение 20.3
Прочитайте из стандартного ввода заранее неизвестное число строк. Поместите их в список. Найдите самую длинную и самую короткую строку.
20.3. Дополнительные операторы ввода/вывода
Иногда необходимо прочитать из входного потока последовательность не интерпретируемых байтов, а типов данных, таких, как char, int, string и т.д. Функциячлен get() класса istream читает по одному байту, а функция getline() читает строку, завершающуюся либо символом перехода на новую строку, либо каким-то иным символом, определяемым пользователем. У функции-члена get() есть три формы:
∙get(char& ch) читает из входного потока один символ (в том числе и пустой) и помещает его в ch. Она возвращает объект iostream, для которого была вызвана. Например, следующая программа собирает статистику о входном потоке, а затем
#include <iostream> int main()
{
char ch;
int tab_cnt = 0, nl_cnt = 0, space_cnt = 0, period_cnt = 0, comma_cnt = 0;
while ( cin.get(ch)) { switch( ch ) {
|
case ' ': |
space_cnt++; |
break; |
|
|
case '\t': |
tab_cnt++; |
break; |
|
|
case '\n': |
nl_cnt++; |
break; |
|
|
case '.': |
period_cnt++; break; |
||
} |
case ',': |
comma_cnt++; |
break; |
|
cout.put(ch); |
|
|
|
|
} |
|
|
|
|
cout << "\nнаша статистика:\n\t" |
|
<< '\t' |
|
|
<< "пробелов: " |
<< space_cnt |
<< |
||
<< "символов новой строки: " << nl_cnt |
||||
'\t' |
<< tab_cnt |
<< "\n\t" |
||
<< "табуляций: " |
<<"точек: " << period_cnt << '\t'
<<"запятых: " << comma_cnt << endl;
копирует входной поток в выходной:
}
Функция-член put() класса ostream дает альтернативный метод вывода символа в выходной поток: put() принимает аргумент типа char и возвращает объект класса ostream, для которого была вызвана.
После компиляции и запуска программа печатает следующий результат:
Alice Emma has long flowing red hair. Her Daddy says
when the wind blows through her hair, it looks almost alive,
like a fiery bird in flight. A beautiful fiery bird, he tells her,

magical but untamed. "Daddy, shush, there is no such creature," she tells him, at the same time wanting him to tell her more. Shyly, she asks, "I mean, Daddy, is there?"
наша статистика: |
символов |
новой строки: 6 |
табуляций: 0 |
пробелов: 59 |
|||
точек: 4 |
запятых: |
12 |
|
∙вторая форма get() также читает из входного потока по одному символу, но возвращает не поток istream, а значение прочитанного символа. Тип возвращаемого значения равен int, а не char, поскольку необходимо возвращать еще и признак конца файла, который обычно равен -1, чтобы отличаться от кодов реальных символов. Для проверки на конец файла мы сравниваем полученное значение с константой EOF, определенной в заголовочном файле iostream. Переменная, в которой сохраняется значение, возвращенное get(), должна быть объявлена как int,
#include <iostream>
int main()
{
int ch;
//альтернатива:
//while ( ch = cin.get() && ch !=
EOF )
while (( ch = cin.get()) != EOF ) cout.put( ch );
return 0;
чтобы в ней можно было представить не только код любого символа, но и EOF:
}
При использовании любой из этих форм get() для чтения данной последовательности нужно семь итераций:
a b c d
Читаются следующие символы: ('a', пробел, 'b', пробел, 'c', символ новой строки, 'd'). На восьмой итерации читается EOF. Оператор ввода (>>) по умолчанию пропускает пустые символы, поэтому на ту же последовательность потребуется четыре итерации, на которых возвращаются символы: 'a', 'b', 'c', 'd'. А вот следующая форма get() может прочесть всю последовательность всего за две итерации;
∙сигнатура третьей формы get() такова:
get(char *sink, streamsize size, char delimiter='\n')
sink – это массив, в который помещаются символы. size – это максимальное число символов, читаемых из потока istream. delimiter – это символ-ограничитель, при обнаружении которого чтение прекращается. Сам ограничитель не читается, а оставляется в потоке и будет прочитан следующим. Программисты часто забывают

удалить его из потока перед вторым обращением к get(). Чтобы избежать этой ошибки, в показанной ниже программе мы воспользовались функцией-членом ignore() класса istream. По умолчанию ограничителем является символ новой строки.
Символы читаются из потока, пока одно из следующих условий не окажется истинным. Как только это случится, в очередную позицию массива помещается двоичный нуль.
∙прочитано size-1 символов;
∙встретился конец файла;
∙встретился символ-ограничитель (еще раз напомним, что он остается в потоке и будет считан следующим).
Эта форма get() возвращает объект istream, для которого была вызвана (функциячлен gcount() позволяет узнать количество прочитанных символов). Вот простой
#include <iostream>
int main()
{
const int max_line = 1024; char line[ max_line ];
while ( cin.get( line, max_line ))
{
//читается не больше max_line - 1 символов,
//чтобы оставить место для нуля
int get_count = cin.gcount();
cout << "фактически прочитано символов: "
<<get_count << endl;
//что-то сделать со строкой
//если встретился символ новой строки,
//удалить его, прежде чем приступать к чтению
следующей
if ( get_count < max_line-1 ) cin.ignore();
}
пример ее применения:
}
Если на вход этой программы подать текст о юной Алисе Эмме, то результат будет выглядеть так:
фактически прочитано символов: 52 фактически прочитано символов: 60 фактически прочитано символов: 66 фактически прочитано символов: 63 фактически прочитано символов: 61
фактически прочитано символов: 43
Чтобы еще раз протестировать поведение программы, мы создали строку, содержащую больше max_line символов, и поместили ее в начало текста. Получили:

фактически прочитано символов: 1023 фактически прочитано символов: 528 фактически прочитано символов: 52 фактически прочитано символов: 60 фактически прочитано символов: 66 фактически прочитано символов: 63 фактически прочитано символов: 61
фактически прочитано символов: 43
По умолчанию ignore() читает и удаляет один символ из потока, для которого вызвана, но можно и явно задать ограничитель и количество пропускаемых символов. В общем виде ее сигнатура такова:
ignore( streamsize length = 1, int delim = traits::eof )
ignore() читает и отбрасывает length символов из потока или все символы до ограничителя включительно или до конца файла и возвращает объект istream, для которого вызвана.
Мы рекомендуем пользоваться функцией getline(), а не get(), поскольку она автоматически удаляет ограничитель из потока. Сигнатура getline() такая же, как у get() с тремя аргументами (и возвращает она тоже объект istream, для которого вызвана):
getline(char *sink, streamsize size, char delimiter='\n')
Поскольку и getline(), и get() с тремя аргументами могут читать size символов или меньше, то часто нужно “спросить” у объекта istream, сколько символов было фактически прочитано. Это позволяет сделать функция-член gcount(): она возвращает число символов, прочитанных при последнем обращении к get() или getline().
Функция-член write() класса ostream дает альтернативный метод вывода массива символов. Вместо того чтобы выводить символы до завершающего нуля, она выводит указанное число символов, включая и внутренние нули, если таковые имеются. Вот ее сигнатура:
write( const char *sink, streamsize length )
Здесь length определяет, сколько символов выводить. write() возвращает объект класса ostream, для которого она вызвана.
Парной для функции write() из класса ostream является функция read() из класса istream с такой сигнатурой:
read( char* addr, streamsize size )
read() читает size соседних байт из входного потока и помещает их, начиная с адреса addr. Функция gcount() возвращает число байт, прочитанных при последнем обращении к read(). В свою очередь read() возвращает объект класса istream, для которого она вызвана. Вот пример использования getline(), gcount() и write():

#include <iostream>
int main()
{
const int lineSize = 1024;
int lcnt = 0; // сколько строк прочитано int max = -1; // длина самой длинной строки
char inBuf[ lineSize ];
// читается до конца строки, но не более 1024 символов while (cin.getline( inBuf, lineSize ))
{
//сколько символов фактически прочитано int readin = cin.gcount();
//статистика: счетчик строк, самая длинная строка ++lcnt;
if ( readin > max ) max = readin;
cout << "Строка #" << lcnt
<< "\tПрочитано символов: " << readin <<
endl;
cout.write( inBuf, readin).put('\n').put('\n');
}
cout << "Всего прочитано строк: " << lcnt << endl; cout << "Самая длинная строка: " << max << endl;
}
Когда на вход было подано несколько фраз из романа Германа Мелвилла “Моби Дик”, программа напечатала следующее:
Строка #1 Прочитано символов: 45
Call me Ishmael. Some years ago, never mind
Строка #2 Прочитано символов: 46
how long precisely, having little or no money
Строка #3 Прочитано символов: 48
in my purse, and nothing particular to interest
Строка #4 Прочитано символов: 51
me on shore, I thought I would sail about a little
Строка #5 Прочитано символов: 47
and see the watery part of the world. It is a
Строка #6 Прочитано символов: 43
way I have of driving off the spleen, and
Строка #7 Прочитано символов: 28 regulating the circulation.
Всего прочитано строк: 7 Самая длинная строка: 51
Функция-член getline() класса istream поддерживает только ввод в массив символов. Однако в стандартной библиотеке есть обычная функция getline(), которая помещает символы в объект класса string:

getline( istream &is, string str, char delimiter );
Эта функция читает не более str::max_size()-1 символов. Если входная последовательность длиннее, то операция завершается неудачно и объект переводится в ошибочное состояние. В противном случае ввод прекращается, когда прочитан ограничитель (он удаляется из потока, но в строку не помещается) либо достигнут конец файла.
//возвращает символ в поток putback( char class );
//устанавливает "указатель на следующий символ потока istream на один символ назад
unget();
//возвращает следующий символ (или EOF),
//но не извлекает его из потока
Вот еще три необходимые нам функции-члена класса istream: peek();
char ch, next, lookahead;
while ( cin.get( ch ))
{
switch (ch) { case '/':
//это комментарий? посмотрим с помощью peek()
//если да, пропустить остаток строки next = cin.peek();
if ( next == '/' )
cin.ignore( lineSize, '\n' ); break;
case '>':
// проверка на лексему >>= next = cin.peek();
if ( next == '>' ) { lookahead = cin.get(); next = cin.peek();
if ( next != '=' ) cin.putback( lookahead );
}
// ...
Следующий фрагмент иллюстрирует использование некоторых из них:
}
Упражнение 20.4
Прочитайте из стандартного ввода следующую последовательность символов, включая все пустые, и скопируйте каждый символ на стандартный вывод (эхо-копирование):
ab c
d |
e |
f |
|