
- •1. Будова нуклеїнових кислот. Пуринові і пиримідинові азотисті основи, нуклеотиди, мононуклеотиди.
- •2. Окислювальне перетворення глюкозо-6-фосфата (пентозофосфатний шунт), його значення.
- •3. Основні шляхи перетворення амінокислот в організмі: трансамінування, дезамінування, декарбоксилювання.
- •4. Метаболізм нейтральних ліпідів. Біосинтез триацилгліцеролів в печінці та кишечнику.
- •5. Заг. Уява про процес аеробного окислення – дихання. Етл мітохондрій тварин, його зв’язок з процесами субстратного ф-ня.
- •6. Рівняння Міхаеліса-Ментен. Константа Міхаеліса та макс. Швидкість ферм. Реакції. Конкурентне та неконкурентне інгібування.
- •7. Структура та властивості ферментів. Ізоферменти. Механізм дії ферментів.
- •8. Дихальний шлях. Енергетика переносу електронів. Спряженість окисного фосфорилювання з процесом перенесення електронів.
- •9. Мембранозв'язані етл. С-ми синтезу стероїдів в мх. Мікросомальні етл. Дихальна с-ма мітохондрій.
- •10. Простагландини, тромбоксани і лейкотрієни. Характеристика. Біологічна роль. Молек. Механізм дії.
- •11. Характеристика гістонових та негістонових білків. Ковалентні модифікації. Біохімічні механізми конденсації та деконденсації хроматину.
- •12. Ліпіди. Властивості, розповсюдження, класифікація, значення.
- •13. Коферменти, класифікація і роль, зв'язок з вітамінами.
- •14. Перетворення білків у кишково-шлунковому тракті. Протеолітичні ферменти та їх специфічність.
- •15. Процесінг первинних транскриптів. Механізми сплайсингу рнк. Особливості процесінгу тРнк, мРнк, рРнк у про- та еукаріотів. Регуляція експресії генів шляхом альтернативного сплайсингу.
- •16. Енергетика ферментативних процесів. Енергія активації. Рівняння Арреніуса та Вант-Гоффа; Лейдлера-Скетчарда та Бренстеда-б'єрума.
- •17. Біохімічні основи регуляції клітинного циклу. Роль білка mpf, білків сімейства циклінів, ростових факторів та циклін-залежних кіназ.
- •18. Регуляція метаболізму ліпідів, жирова тканина і печінка в регуляції метаболізму ліпідів, регуляція обміну холестеролу.
- •19. Катаболізм вуглеводів, шляхи розпаду вуглеводів у тканинах, анаеробне перетворення вуглеводів.
- •20. Шляхи регуляції вуглеводного обміну, роль адреналіну та інсуліну.
- •21. Характеристика складних ліпідів, фізіологічне значення.
- •23. Молекулярні механізми проведення регуляторних сигналів. Система вторинних посередників.
- •24. Регуляція вуглеводного обміну. Роль гормонів у вуглеводному обміні. Порушення. Цукровий діабет.
- •25. Перекисне окиснення ліпідів. Регуляція пол. Біологічна активність продуктів пол
- •26. Роль білків в процесі реплікації. Поcтреплікативні модифікації днк. Роль рестриктаз у збереженні „чистоти” ген. Інформації.
- •27. Вітамін в12 – кобаломін. Будова вітаміну. Особливості всмоктування вітаміну в тонкому кишечнику. Транскобаломіни. Біологічна роль, будова в12-коферментів.
- •28. Рівні структурної організації хроматину. Хромосома, теломера та теломеразна активність.
- •29. Загальні шляхи обміну амінокислот: трансамінування, процеси дезамінування та декарбоксилювання.
- •30. Молек механізми проведення і підсилення рецепторного сигналу. Основні теорії рецепції. Вторинні месенджери. Механізми проведення та підсилення рецепторного сигналу.
- •31. Кальмодулін – регуляторний тригерний білок, його участь у роботі месенджерних каскадів.
- •32. Катаболізм триацилгліцеролів та фосфоліпідів
- •33. Класифікація кофакторів та їх характеристика.
- •34. Шляхи катаболізму пуринових та піримідинових основ, кінцеві продукти.
- •35. Кінетика та енергетика мембранного транспорту
- •36. Структура та властивості рнк-полімерази.
- •37. Пасивний та активний транспорт через мембрану.
- •38. Кінетика ферментативного каталізу. Швидкість ферментативних реакцій. Енергія активації.
- •39. Система циклічних нуклеотидів:структура, утворення, роль.
- •40. Гормони підшлункової залози, структура, механізм дії.
- •41. Біологічні мембрани та їх функції. Сучасне уявлення про структуру та функції мітохондрій.
- •42. Утворення моносахаридів. Біосинтез оліго- та полісахаридів.
- •43. Гормони щитовидної залози: структура, біологічна роль.
- •44. Характеристика вітамінів а, е, к. Структура, біологічна роль.
- •45. Транспортна рнк, особливості будови, роль в біосинтезі білка.
- •46. Трансамінування амінокислот, його механізм.
- •47. Транскрипція, ферменти транскрипції і її регуляція. Реорганізація хроматину при транскрипції.
- •48. Рівні організації днк, реплікація днк.
- •50. Роль металів у каталітичній активності ферментів.
- •51. Перетворення енергії в живих системах. Шляхи синтезу атф у клітині.
- •52. Молекулярні механізми проведення регуляторних сигналів
- •53. Гормони. Хімічна будова, фізіологічна роль найважливіших гормонів.Молекулярний механізм дії.
- •54. Цикл ди та трикарбонових кислот (цикл Кребса)
- •55. (№7) Ферменти. Структура ферментів, ізоферменти, механізми дії ферментів.
- •56. Структура та роль нуклеотидтрифосфатів.
- •57. Структура і біологічна роль днк.
- •58. Принцип класифікації і номенклатура ферментів.
- •59. Глюконеогенез - синтез глюкози
- •60. Структура, властивості та класифікації амінокислот.
- •61. Мембрани й міжклітинні взаємодії
- •62. Гідроліз білків в шкт. Внутрішньоклітинне перетворення білків.
- •63. Кінетика гальмування (інгібування) ферментативних реакцій
- •64. Шляхи перетворення ліпідів у клітині
- •65. Вуглеводи, будова, властивості, класифікація і роль у живій природі.
- •66. Основні етапи біосинтезу білка на рибосомах
- •67. Анаеробне перетворення вуглеводів. Спиртове бродіння.
- •68. Характеристика хромопротеїдів. Представники. Гемоглобін і транспорт кисню.
- •69. Білки, структура і біологічна функція. Рівні організації білкових структур.
- •70. Шляхи біосинтезу пуринових та піримідинових основ.
- •71. Характеристика активних центрів ферментів.
- •72. Чоловічі статеві гормони.
- •73. Поняття про кінетику ферментативного каталізу.
- •74. Регуляція біосинтезу білка в клітинах.
- •75. Метаболічний розпад пуринів та піримідинів.
- •76. Метаболізм простагландинів.
- •77. Вітаміни а та d: структуру, значення.
- •78. Структура і біологічна роль рнк. Види рнк.
- •79. Порушення обміну вуглеводів. Цукровий діабет.
- •80. Біосинтез сечовини.
- •81. Регуляція метаболізму ліпідів
- •82. Біосинтез фосфоліпідів.
- •83. Регуляція ферментного апарату клітин.
- •84. Розпад та біосинтез полісахаридів.
- •85. Біосинтез жирних кислот (жк)
- •86. Декарбоксилювання амінокислот, роль амінів
- •87. Біогенні аміни та їх значення.
- •88. Дихальний ланцюг (ланцюг переносу електронів).
- •89. Анаеробне перетворення вуглеводів, глікогеноліз.
- •90. Ейкозаноїди - похідні арахідонової кислоти, класифікація, значення.
32. Катаболізм триацилгліцеролів та фосфоліпідів
1) Жири (триацилгліцероли ) – найбільш важливий резерв енергії в організмі. Вони зберігаються головним чином в клітинах жирової тканини, адипоцитах. Кінцевими продуктами повного ферментативного гідролізу є гліцерол та вільні жирні кислоти. Під дією ліпаз, спочатку швидко утворюються диацилгліцероли (ДАГ), з яких вже повільніше моноацилгліцероли. В адипоцитах деградація жирів (ліполіз ) каталізується гормонзалежною ліпазою (гормони - адреналін, норадреналін, глюкагон ) Рівень вільних жирних кислот, що надходять із жирової тканини, залежить від активності цієї ліпази – фермент регулює таким чином рівень жирних кислот у плазмі. З плазми вони потрапляють у тканини, де з них синтезуються жири чи за рахунок окиснення утворюється енергія.
2) Катаболізм фосфогліцеринів відбувається під контролем фосфоліпаз. В залежності від положення зв’язку, що гідролізуєтьсяу фосфоліпіді, розрізняють 4 основні класи фосфоліпази: A, B, C и D. Фосфоліпізи А1, А2 ферменти з чіткою позиційною специфічністю. Вони гідролізують складноефірні зв’язки у молекулах гліцерофосфоліпідів біля атомів С -1 і С-2 гліцеролу, відповідно. Кожна з фосфоліпаз С і D гідролізує один з фосфодіефірних зв’язків у складі голови молекули. Фосфоліпаза C - гідролізує етерний зв’язок між гліцериновим залишком й полярною групою, при цьому утворюються диацилгліцерин і фосфатовмісна полярна група. Фосфоліпаза D – гідролізує зв’язок між фосфатною групою та спиртовою, при цьому вивільняється фосфатидна кислота та спирт. Деякі фосфоліпази діють на гліцерофосфоліпіди тільки одного типу, наприклад, на фосфатидилінозитол-4,5-бісфосфат (зображено на рисунку) чи фосфатидилхолін; інші менш специфічні.
33. Класифікація кофакторів та їх характеристика.
Каталітична дія багатьох ферментів може виявлятися лише за присутності деяких специфічних речовин, які одержали назву кофакторів. Розрізняють три групи кофакторів: 1) специфічні коферменти, або коензими - органічні сполуки з низькою молекулярною масою, які є термостабільними і можуть зв'язуватися з ферментним білком (апоферментом) оборотно; 2) простетичні групи, міцно приєднані до апоферменту - коферменти; 3) активатори - неспецифічні речовини (різні метали, відновлювальні агенти тощо), які приводять фермент у каталітично активний стан. Цей поділ є умовним, тому що важко розділити окремі групи кофакторів. Деякі коферменти, мабуть, існують у вільному вигляді й приєднуються до білкової частини ферменту під час перебігу реакції (НАД+, АТФ тощо).
Багато коферментів і простетичних груп є похідними вітамінів.
Коферментами називають органічні сполуки небілкової природи, що беруть участь у перетвореннях, які каталізуються ферментами. Вони мають відносно невелику молекулярну масу, термостабільні, їх можна легко відокремити від апоферменту за допомогою різних засобів. Від субстратів ферментативним перетворень коферменти відрізняються тим, що здебільшого не змінюються в балансі повного каталітичного циклу.
Коферменти за їх функцією у процесі ферментативного каталізу можна розділити на такі основні групи: 1) коферменти, які переносять атоми водню та електрони і зв'язані з ферментами класу оксидоредуктази: нікотинамідні та флавінові коферменти, ліпоєва кислота, глутатіон і аскорбінова кислота, убіхінони, вітаміни групи К; 2) коферменти, які переносять хімічні групи й зв'язані з ферментами класу трансферази: нуклеозидфосфати, кофермент А, похідні фолієвої кислоти, фосфати вуглеводів, піридоксалеві коферменти; 3) коферменти, які каталізують процеси синтезу, ізомеризації та розщеплення вуглець-вуглецевих зв'язків; ця група зв'язана з ферментами, що належать до класу ліаз, ізомераз, лігаз: тіамінпірофосфат, біотин, кобамідні коферменти.
За хімічкою будовою коферменти поділяють на такі групи: сполуки аліфатичного ряду (глутатіон, ліпоєва кислота); ароматичного ряду (убіхінони - коензими Q, вітаміни групи К); гетероциклічні сполуки (похідні піридоксаля: піридоксальфосфат і піридоксамінфосфат, тіамінпірофосфат - похідне вітгаміну В1, біотин, похідні фолієвої кислоти); похідні нуклеозидів і нуклеотидів (АТФ та інші нуклеозидтрифосфати, КоА, нікотинамідні, флавінові, ксзбамідні, залізопорфіринові коферменти).
Роль кофакторів, крім бі органічних сполук можут відігравати й іони металів( Mg2+, Ca2+, Fe2+, Cu2+, Cu1+ тощо). Іони металів зв’язуються з апоферментом або входять до складу небілкової простетичної групи, наприклад, до складу порфіринового кільця гемвмісних ферментів (пероксидаза, каталаза).