Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по крови.doc
Скачиваний:
72
Добавлен:
03.09.2019
Размер:
1.52 Mб
Скачать

Обезвреживание активных форм кислорода в эритроцитах

Высокое содержание О2 в эритроцитах является причиной образования большого количества активных форм кислорода. Постоянным источником активных форм кислорода в эритроцитах является неферментативное окисление гемоглобина в метгемоглобин: 1). b Fe2+  etb Fe3+ e- 2). e- + 2 → О2

Также СРО в эритроците стимулируют различные окислители - нитраты, сульфаниламиды, противомалярийное лекарство примахин.

Образующиеся активные формы кислорода запускают реакции СРО, которые приводят к разрушению липидов, белков, углеводов и др. органических молекул и являются причиной старения и гемолиза эритроцита.

Для сдерживания СРО в эритроците функционирует ферментативная антиоксидантная система. Для ее работы необходим глутатион и НАДФН2.

Супероксиддисмутаза (Cu2+ и Zn2+) превращает супероксидные анионы в перекись водорода: 2О2 + 2H+ → H2O2+ O2

Каталаза - геминовый фермент, разрушает перекись водорода до воды и кислорода: 2Н2О2 → H2O+ O2

Глутатионпероксидаза (селен) при окислении глутатиона разрушает перекись водорода и гидроперекиси липидов до воды:

Н2О2 + 2 GSH → 2 Н2О + G-S-S-G.

Глутатионредуктаза восстанавливает окисленный глутатион с участием НАДФН2:

GS-SG + НАДФН2 → 2 GSH + НАДФ+.

Недостаток глутатиона и НАДФН2 в эритроцитах приводит к снижению АОА, активации ПОЛ и может стать причиной гемолитической анемии. Различные окислители - нитраты, сульфаниламиды, противомалярийное лекарство примахин, усиливают гемолиз эритроцитов.

Дефицит глутатиона может быть обусловлен действием токсических веществ, например ионами тяжелых металлов или наследственным недостатком глутатионредуктазы.

Дефицит НАДФН2 возникает при наследственной недостаточности (аутосомно-рецессивный тип) первого фермента ПФШ глюкозо–6–фосфатдегидрогеназы. Не менее 100 млн человек являются носителями около 3000 генетических дефек­тов глюкозо-6-фосфатдегидрогеназы.

Для оценки эффективности работы антиоксидантных систем определяют перекисную резистентность эритроцитов.

Обмен метгемоглобина

В течение суток до 3% гемоглобина может спонтанно окисляться в метгемоглобин:

b Fe2+  etb Fe3+ e-

Восстановление метгемоглобина до гемоглобина осуществляет метгемоглобинредуктазная система. Она состоит из цитохрома b5 и цитохром b5 редуктазы (флавопротеин), донором водорода служит НАДН2, образующийся в гликолизе.

1). Цитохром b5 восстанавливает Fe3+ метгемоглобина в Fe2+ гемоглобина:

MetHb(Fe3+) + цит b5 восст → Hb(Fe2+) + цит b5 окисл

2). Окисленный Цитохром b5 восстанавливается цитохром b5 редуктазой:

цит b5 окисл + НАДН2 → цит b5 восст + НАД+

Восстановление метгемоглобина может осуществляться также неферментативным путём, например, за счёт витамина В12, аскорбиновой кислоты или глутатиона.

У здорового человека концентрация метгемоглобина в крови не превышает 1%.

Генетический дефект ферментов гли­колиза и метгемоглобинредуктазной системы приводит к накоп­лению метгемоглобина и увеличению образо­вания активных форм кислорода. Активные формы кислорода вызывают образование дисульфидных мостиков между протомерами метгемоглобина, что приводит к их агрегации с образованием телец Хайнца. Последние способствуют разрушению эритроцитов при попадании их в мелкие капилляры. Накопление метгемоглобина в крови из-за нарушения транспорта кислорода ведет к гипоксии.

2,3–дифосфоглицератный шунт

Кроме традиционного ПФШ, у гликолиза эритроцитов многих млекопитающих есть свой специфический шунт - 2,3–дифосфоглицератный.

В эритроцитах имеется дифосфоглицератмутаза, которая позволяет обходить в гликолизе фосфоглицераткиназную реакцию. Дифосфоглицератмутаза катализирует превращение 1,3–ФГК в 2,3–ФГК. Ее стимулирует дефицит кислорода. В условиях гипоксии до 20% глюкозы идет по этому пути. Образующаяся 2,3–ФГК встраивается в молекулу гемоглобина и аллостерически уменьшает его сродство к кислороду. Кривая диссоциации оксигемоглобина смещается вправо, что способствует переходу кислорода из оксигемоглобина в ткани.

Под действием 2,3–дифосфоглицератфосфатазы (принято считать, что этой активностью обладает фосфоглицератмутаза) 2,3–ФГК превращается в 3–ФГК, которая возвращается в реакции гликолиза.

При 2,3–дифосфоглицератном шунте в гликолизе не синтезируется АТФ, а свободная энергия 1,3–ФГК, рассеивается в форме теплоты. В этом может заключаться определённое преимущество, поскольку даже в тех случаях, когда потребности в АТФ минимальны, гликолиз может продолжаться.