Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lektsii_matved (1).doc
Скачиваний:
4
Добавлен:
02.09.2019
Размер:
863.23 Кб
Скачать

2. Классификация материалов и требования к ним.

Все материалы целесообразно разделить на 2 основные группы: металлические и неметаллические.

К металлическим относятся металлы и их сплавы. В природе приблизительно 4/5 всех элементов приходится на долю черных и цветных металлов.

Железо и сплавы на его основе (сталь, чугун) принято называть черными металлами. Сюда же можно отнести тугоплавкие металлы (W, V, Mo).

К цветным металлам относятся:

а) легкие металлы (γ‹5 г/см3). Это Mg, Al, Be, Ti (1,74; 2,7; 1,82; 4,54).

б) тяжелые (γ›5 г/см3) – Cu, Ni, Pb (8,9; 8,9; 11,34).

в) легкоплавкие – Zn, Cd, Hg, Bi, Sn (419,5; 321; -38,9; 271; 232).

г) благородные металлы – Ag, Au, Pt, Pd, Os.

Неметаллические материалы могут быть органического и неорганического происхождения. К органическим относятся полимерные материалы (пластмассы, каучуки, резина), углеграфитные материалы, дерево.

Неорганические материалы подразделяются на:

а) горные породы; б) керамические материалы; в) искусственные плавленые силикатные материалы (стекло, эмали).

Материалы должны обладать необходимой механической прочностью и достаточным запасом пластичности.

Ежегодно 1/3 металлических материалов выходит из строя в результате коррозии, поэтому важным требованием является высокая коррозионная стойкость.

В ряде отраслей техники необходима высокая жаропрочность, т.е. способность материалов сохранять необходимую прочность при работе в области высоких температур.

При низких температурах металлы могут переходить в хрупкое состояние. Для предотвращения этого металл должен обладать стойкостью к хладноломкости.

Во всех случаях учитывается экономическая целесообразность использования того или иного материала. Иногда предъявляются специфические требования, например, определенная степень чистоты.

3. Металлы и их свойства. Металлическая связь.

Известно в настоящее время 80 металлов. Они занимают 4/5 всех клеточек таблицы Менделеева. Металлам характерны следующие свойства:

  1. Высокая Q и электропроводимость.

  2. Положительный коэффициент электрического сопротивления. С повышением температуры электрическое сопротивление возрастает. Большое число металлов (примерно 30) обладают сверхпроводимостью. При температуре, близкой к абсолютному О электрическое сопротивление этих металлов скачкообразно падает до О.

  3. Способность испускать электроны при нагреве (термоэлектронная эмиссия).

  4. Отражательная способность, непрозрачность и металлический блеск.

  5. Повышенная способность к пластической деформации. При наличии этих свойств достигается так называемое металлическое состояние вещества.

Металлоиды, в отличие от металлов, как правило, хрупки, не обладают металлическим блеском, характеризуются низкой тепло- и электропроводимостью и отрицательным коэффициентом электрического сопротивления.

Все наиболее характерные свойства металлов объясняются наличием в них легкоподвижных электронов проводимости.

Как известно, атом состоит из положительно заряженного ядра и движущихся вокруг него электронов. Различают внешние (валентные) электроны, связь которых с ядром незначительна и внутренние – более прочно связанные с ядром.

Внешние электроны способны отщепляться от атомов и находится в относительно свободном состоянии, образуя электронный газ.+заряженные ионы стягиваются отрицательно заряженным электронным газом.

Атомы в металлах располагаются близко один к другому. Это означает, что наблюдается значительное перекрытие орбиталей внешних электронов и что валентные электроны фактически связаны не с отдельным ядром, а делокализованы по всем атомам металла. Таким образом, металл представляет собой ионно-электронную систему, устойчивость которой определяется электрическим притяжением между положительно заряженными ионами и обобщенными электронами. Такое взаимодействие между ионами и электронным облаком называется металлической связью.

Сила связи в металле определяется силами отталкивания и силами притяжения между ионами и электронами, не имеющими резко выраженного направленного характера.

Атомы или ионы располагаются на таком расстоянии друг от друга, чтобы энергия взаимодействия была минимальной.

Различают 4 типа металлической атомной связи – ионную, ковалентную, полярную и металлическую.

Ионная связь возникает у разнородных атомов, когда какой-либо из них отдает с внешней оболочки, а другой принимает 1 или несколько электронов. Образующиеся при этом положительные и отрицательные ионы с завершенными внешними оболочками благодаря электрическим силам взаимно притягиваются.

Ковалентная связь возникает обычно у одинаковых атомов и осуществляется парами валентных электронов, которые одновременно принадлежат 2-м соседним ионам, находящимся в узлах решетки. Связь имеет резкую направленность и высокую прочность. Этот тип связи характерен для соединений углерода.

Полярная связь возникает вследствие смещения электронной плотности вмолекулах к более электронно-отрицательному атому и появления слабого электрического сопротивления.

Приведенные положения позволяют объяснить характерные свойства металла.

Электрическая проводимость – наличием в металле свободных электронов, которые под влиянием разности потенциалов перемещаются от отрицательного полюса к положительному. С повышением температуры усиливаются колебательные движения ионов, что затрудняет прямолинейное движение электронов, в результате чего возрастает электрическое сопротивление.

При низких температурах колебательное движение ионов сильно уменьшается и электропроводимость возрастает. У некоторых металлов в результате упорядоченного движения пар электронов при очень низких температурах (‹200К) электрическая проводимость обращается в ∞ (сверхпроводимость).

Высокая Q-проводимость металлов обусловливается как большой подвижностью свободных электронов, так и колебательными движениями ионов, вследствие чего происходит быстрое выравнивание температуры в массе металла.

Высокая пластичность металла объясняется периодичностью их атомного строения и ненаправленностью металлической связи. В процессе пластической деформации (ковка, прокатка), т.е. при смещении объемов металла, связь между ионами не нарушается.

Кристаллы с ковалентной связью хрупки, т.к. при деформации связь нарушается.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]