
- •19. Экспертные системы. База знаний, механизм вывода, механизмы приобретения и объяснения знаний.
- •20. Экспертные системы. Примеры практических экспертных систем.
- •21. Экспертные системы. Формализация этапов экспертной деятельности.
- •22. Экспертные системы. Инженерия знаний.
- •23. Экспертные системы. Организация базы знаний. Продукционная модель для представления знаний.
- •24. Экспертные системы. Семантические сети для представления знаний.
- •25. Экспертные системы. Жизненный цикл экспертной системы
- •Формализация.
- •Реализация
- •Тестирование
- •26. Нейронные сети. Понятие нейронной сети
- •27. Нейронные сети как тип моделей ии. Применение нс
- •28. Нейронные сети. Структура и функции нейрона.
- •29. Нейронные сети. Модель искусственного нейрона.
- •30 Нейронные сети. Элементная база нейрокомпьютеров- аналоговая, цифровая, гибридная. Стандартные процессоры обработки сигналов.
- •31 Нейронные сети. Преимущества и недостатки различных типов элементной базы аппаратных нейрокомпьютеров.
- •32 Нейронные сети. Нейро-эмуляторы, их преимущества и недостатки.
- •33 Нейронные сети. Секторы рынка нейросетевых программных продуктов: нейро-пакеты и готовые решения на основе нейросетей.
- •34 Нейронные сети. Инструменты разработки нейроприложений.
- •35 Нейронные сети. Классификация базовых нейроархитектур по типу связей и типу обучения
- •36. Нейронные сети. Методы обучения нс. Машинное обучение
- •37. Нейронные сети. Обучение с учителем. Эффекты обобщения и переобучения
- •38. Нейронные сети. Персептроны: архитектура, возможности и решаемые задачи.
- •39. Нейронные сети. Однонаправленные многослойные нейронные сети
- •48 Генетический алгоритм. Мутация, ее роль в алгоритме. Механизмы реализации процесса мутации.
- •49 Генетический алгоритм. Методы скрещивания, применяемые в генетических алгоритмах и их эффективность.
- •50 Генетический алгоритм. Способы реализации отбора и их эффективность.
- •51 Генетический алгоритм. Метод штрафных функций.
24. Экспертные системы. Семантические сети для представления знаний.
Под экспертной системой (ЭС) будем понимать программу, которая использует знания специалистов (экспертов) о некоторой конкретной узко специализированной предметной области и в пределах этой области способна принимать решения на уровне эксперта-профессионала.
Большая часть семантических моделей создана на базе семантических сетей. Этот термин обозначает целый класс подходов, для которых общим является использование графических схем с узлами, соединенными дугами. Узлы (вершины сети) представляют некоторые понятия (объекты, события, явления), а дуги – отношения между ними. Семантические модели являются объектно-ориентированными и обеспечивают в достаточной мере такой признак, как связность, реализуя четыре типа связей между объектами: классификацию, агрегирование, обобщение, ассоциацию.
Основная идея моделирования при помощи семантических моделей заключается в том, что модель представляет данные о реальных объектах и связях между ними прямым способом, что существенно облегчает доступ к знаниям: начиная движение от некоторого понятия, по дугам отношений можно достичь других понятий.
Возьмем, например, следующую фразу: «Программист сел за компьютер и отладил программу». Здесь выделяется три объекта: программист (a1), компьютер (a2) и программа (a3). Эти объекты связаны отношениями: сел за (r1), отладил (r2), загружена в (r3). К отношениям, явно выраженным в тексте, отнесено и отношение «загружена в» («программа загружена в компьютер»).
Использование семантических моделей позволяет представить в базе знаний экспертной системы знания о любой предметной области и осуществить автоматическое построение семантических сетей непосредственно из текста.
К основным достоинствам семантических моделей можно отнести: представление средств для выражения ограничений; описание связей между объектами; определение операций над объектами.
Накладывая ограничения на описание вершины дуг, можно получить сети различного вида. Если вершины не имеют собственной внутренней структуры, то такие сети называют простыми. В противном случае они являются иерархическими сетями. Одно из основных отличий иерархических семантических сетей от простых состоит в возможности разделить сеть на подсети и установить отношения не только между вершинами, но и между пространствами.
Характерной особенностью некоторых семантических моделей является интегрированное описание процедурной семантики и статической семантики – допустимые операции над объектами определяются совместно с определением структур данных.
Наряду с достоинствами семантические модели обладают некоторыми недостатками. В семантических сетях нет специальных средств, позволяющих определить временные зависимости, поэтому временные значения и события трактуются как обычные понятия. Произвольная структура и различные типы вершин и связей усложняют процедуру обработки информации. Стремление устранить эти недостатки послужило причиной появления особых типов семантических сетей: синтагматические цепи, сценарии, фреймы и т.п.