
- •Содержание
- •Тема 1. Введение. Твердое тело. Силы
- •1.1 Введение 9
- •Тема 2. Строение твердого тела 23
- •Тема 3. Дефекты. Роль дефектов в твердом теле 57
- •3.2. Точечные дефекты решетки 57
- •Тема 4. Диаграммы состояния двухкомпонентных
- •Тема 5. Некоторые положения квантовой механики 99
- •Тема 6. Элементы зонной теории твердого тела. Взгляд на строение атома и твердого тела с позиций квантовой механики 119
- •Тема 7. Полупроводники. Собственный полупро-
- •Тема 8 . Размерное квантование и квантово-размер-
- •Тема 9. Основные положения термодинамики, механизмы роста пленок и образование зародышей 192
- •Тема 10. Технология получения, механизмы и режимы роста гетероэпитаксиальных структур 232
- •Тема 11. Методы получения нанообъектов и квантово-размерных структур 267
- •Тема 12. Методы исследования наноматериалов 341
- •Тема 1. Введение. Твердое тело. Силы взаимодействия. Типы связи.
- •1.1. Введение
- •1.2. Твердое тело. Силы взаимодействия. Типы связи.
- •Тема 2. Строение твердого тела. Цели и задачи изучения темы:
- •2.1. Кристалл.
- •2.2. Решетка Бравэ. Трансляция. Элементарная ячейка.
- •2.3.Элементы симметрии.
- •2.4. Группы симметрии. Сингонии.
- •2.5. Плотнейшие упаковки частиц в структурах.
- •2.6. Жидкие кристаллы.
- •2.7.Наночастицы с гранецентрированной решеткой. Кубоктаэдр.
- •Элементы симметрии.
- •Тема 3. Дефекты. Роль дефектов в твердом теле.
- •3.1. Дефекты кристаллических решеток.
- •3.2. Точечные дефекты решетки
- •3.3. Линейные дефекты кристаллической решетки.
- •3.4 Поверхностные дефекты кристаллической решетки.
- •3.5. Объёмные дефекты кристаллической решетки.
- •3.6. Энергетические дефекты кристаллической решетки.
- •3.7. Твёрдые растворы
- •Поверхностные дефекты кристаллической решетки.
- •Тема 4. Диаграммы состояния двухкомпонентных систем.
- •4.1. Типы диаграмм состояния.
- •Тема 5. Некоторые положения квантовой механики.
- •5.1.Возникновение квантовой механики.
- •5.2. Волновая функция ψ. Плотность вероятности.
- •5.3. Соотношение неопределенности Гейзенберга.
- •5.4. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний.
- •5.5. Принцип причинности в квантовой механике.
- •5.6. Движение свободной частицы
- •5.7. Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками».
- •5.8. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- •5.9. Линейный гармонический осциллятор в квантовой механике.
- •Принцип причинности в квантовой механике.
- •Движение свободной частицы.
- •Тема 6. Элементы зонной теории твердого тела. Взгляд на строение атома и твердого тела с позиций квантовой механики.
- •6.1. Взгляд на строение атома и твердого тела с позиций кванто-вой механики.
- •6.1.1. Современный взгляд на строение и свойства
- •6.1.2. Взгляд на строение атома с позиций квантовой механики.
- •6.2. Элементы зонной теории.
- •6.2.1.Основные положения зонной теории.
- •6.2.2. Волновая функция электрона в периодическом поле.
- •6.2. 3. Зоны Бриллюэна.
- •6.2.4. Методы расчета энергетической структуры кристаллов.
- •6.2.4.1. Приближение сильносвязанных электронов.
- •6.2.4.2. Приближение свободных электронов. Энергетический спектр электронов в прямоугольной потенциальной яме.
- •6.2.4.3. Приближение слабосвязанных электронов.
- •6.2.5. Модель Кронига – Пенни.
- •6.2.6. Заполнение зон электронами. Металлы, диэлектрики, полупроводники.
- •Тема 7. Полупроводники. Собственный полупроводник. Генерация и рекомбинация носителей зарядов. Уровень Ферми. Эффективная масса носителя заряда. Примесный полупроводник. Цели и задачи изучения темы:
- •7.1. Полупроводники.
- •7.2.Собственные и примесные полупроводники. Носители заряда в полупроводниках.
- •7.3. Энергия Ферми.
- •7.4. Генерация и рекомбинация носителей зарядов.
- •7.5. Собственная проводимость полупроводника.
- •7.6. Примесные полупроводники.
- •7.6.1. Примесные уровни.
- •7.6.2. Примесная проводимость полупроводников.
- •7.6.3. Полупроводник р-типа.
- •7 .6.4. Сильно легированный полупроводник. Роль беспорядка в кристалле.
- •7.7. Температурная зависимость проводимости примесных полупроводников.
- •7.8. Дрейфовый и диффузионный токи в полупроводнике.
- •А плотность дырочного дрейфового тока
- •Вопросы для повторения:
- •Резюме по теме:
- •Тема 8 . Размерное квантование и квантово-размерные структуры.
- •8.1. Принцип размерного квантования
- •8.2. Условия наблюдения квантовых размерных эффектов.
- •8.3. Структуры с двумерным электронным газом.
- •8.4. Структуры с одномерным электронным газом (квантовые нити).
- •8.5. Структуры с нуль-мерным электронным газом
- •8.6. Структуры с вертикальным переносом.
- •Тема 9. Основные положения термодинамики, механизмы роста пленок и образование зародышей.
- •9.1. Основные понятия термодинамики.
- •9.2. Три начала термодинамики.
- •9.3. Термодинамические потенциалы.
- •9.4. Термодинамическая теория фазовых равновесий.
- •9.4.1. Термодинамические системы.
- •9.4.2. Условия фазового равновесия.
- •9.4.3. Фазовые переходы.
- •9.5. Принцип локального равновесия.
- •9.6. Самоорганизация систем.
- •9.7. Поверхностные явления.
- •9.7.1. Поверхностная энергия.
- •9.7.2. Поверхностное натяжение.
- •9.7.3. Капиллярные явления.
- •9.7.4. Адсорбция, десорбция и испарение с поверхности.
- •9.8. Массоперенос и ионизация на поверхности.
- •9.8.1. Массоперенос и ионизация на поверхности.
- •9.8.2. Межфазные характеристики.
- •9.9. Механизмы роста пленок на реальных подложках.
- •Тема 10. Технология получения, механизмы и режимы роста гетероэпитаксиальных структур.
- •10.1. Гетерогенные процессы формирования наноструктур
- •10.1.1. Молекулярно-лучевая эпитаксия.
- •10.2. Газовая эпитаксия из металлоорганических соединений.
- •10.3. Метод нанолитографии.
- •10.4. Самоорганизация квантовых точек и нитей.
- •10.4.1. Режимы роста гетероэпитаксиальных структур.
- •10.4.2. Рост наноструктур на фасетированных поверхностях.
- •10.4.3. Трехмерные массивы когерентно-напряженных островков.
- •10.4.4. Поверхностные структуры плоских упругих доменов.
- •1 0.4.5. Структуры с периодической модуляцией состава в эпи-таксиальных пленках твердых растворов полупроводников.
- •1 0.5. Изготовление наноструктур и наноприборов с помощью стм и асм.
- •Тема 11. Методы получения нанообъектов и квантоворазмерных структур.
- •11.1. Коллоидная и золь-гельная технология.
- •11.1.1. Формирование структур на основе коллоидных растворов.
- •11.1.2. Организация и самоорганизация коллоидных структур.
- •11.1.3. Оптические и электронные свойства коллоидных кластеров.
- •11.1.4. Коллоидные кристаллы. Формирование упорядоченных наноструктур.
- •11.1.5. Золь-гель технология.
- •11.1.6. Методы молекулярного наслаивания и
- •11.1.7. Методы получения металлов и диэлектриков.
- •11.2. Методы получения упорядоченных наноструктур. Гетероструктуры.
- •11.2.1. Гетероструктуры – основа получения наноструктур.
- •11.2.2. Формирование полупроводниковых и металлических нановолокон и спиралей.
- •11.2.3 Самоорганизация при эпитаксиальном росте.
- •12.2.3.1. Наногофрированные структуры.
- •11.2.3.2. Самоорганизация гетероэпитаксиальных структур.
- •11.3. Пучковые методы нанолитографии.
- •11.3.1. Литографические методы формирования структур.
- •11.3.2. Оптическая литография.
- •11.3.3. Рентгеновская литография.
- •11.3.4. Электронная литография.
- •11.3.5. Ионная литография.
- •11.3.6. Возможности пучковых методов нанолитографии в наноэлектронике.
- •11.3.7. Нанопечатная литография.
- •11.3.8. Ионный синтез квантовых наноструктур.
- •11.4. Рост на активированных поверхностях. Нановискеры.
- •11.5. Методы зондовой нанотехнологии.
- •11.5.1. Физические основы зондовой нанотехнологии.
- •11.5.2. Контактное формирование нанорельефа.
- •11.5.3. Бесконтактное формирование нанорельефа.
- •11.5.4. Локальная глубинная модификация поверхности.
- •11.5.5. Межэлектродный массоперенос.
- •11.5.6. Локальное анодное окисление.
- •11.5.8. Совместное использование лазера и стм
- •Тема 12. Методы исследования наноматериалов.
- •12.1. Введение.
- •12.2. Методы исследования химического состава поверхности.
- •12.2.1. Масс-спектроскопия.
- •12.2.3. Ионная масс-спектроскопия.
- •12.2.4. Фотоэлектронная спектроскопия.
- •12.2.5. Радиоспектроскопия.
- •12.3. Исследования физической структуры поверхности.
- •12.3.1. Рентгеноструктурный анализ.
- •12.3.2. Рентгеновская спектроскопия и дифракция.
- •1 2.3.2.1. Рассеяние на аморфных и частично упорядоченных объектах. Малоугловое рентгеновское рассеяние.
- •12.3.2.2. Рентгеновская спектроскопия поглощения: exafs, xans, nexafs.
- •12.3.3. Анализ поверхности электронным пучком.
- •12.3.4. Полевая эмиссионная микроскопия.
- •12.3.5. Сканирующая зондовая микроскопия.
- •12.3.5.1. Сканирующая туннельная микроскопия.
- •12.3.5.2. Атомно-силовая микроскопия.
- •12.3.6. Магнито – силовая микроскопия.
- •12.3.7. Электронная микроскопия.
- •12.3.8. Эллипсометрия.
- •12.4. Спектроскопия.
- •12.4.1. Инфракрасная и рамановская спектроскопия.
- •12.4.2. Фотоэмиссия и рентгеновская спектроскопия.
- •12.5. Методы исследования кинетических свойств объема и поверхности наноматериалов и наноструктур.
- •12.5.1. Исследование удельного сопротивления.
- •12.5.2. Диагностика поверхностных состояний.
- •12.5.3. Кинетические параметры.
9.5. Принцип локального равновесия.
Ранее рассмотренная равновесная термодинамика описывала свойства равновесных состояний.
Термодинамическое равновесие подразумевает состояние, в которое с течением времени приходит система в условиях изоляции от окружающей среды.
Для равновесных состояний понятие времени несущественно. Поэтому в три начала термодинамики и в термодинамические потенциалы время не вошло. Более правильным названием равновесной термодинамики было бы термостатика.
Появление потоков и градиентов термодинамических величин, а также процессы переноса приводят к неравновесным состояниям систем, меняющих свои параметры во времени. Термодинамика неравновесных процессов является общей теорией макроскопического описания неравно-весных систем.
При математическом описании систем, в которых проистекают неравновесные процессы, системы рассматриваются как непрерывные среды, а параметры их состояния – как непрерывная функция координат и времени. Систему представляют как совокупность элементарных объемов, содержа-щих значительное количество частиц среды. Состояние каждого выделенного элемента характеризуется температурой, плотностью, химическим потенциа-лом и другими термодинамическими параметрами.
Описание неравновесных систем сводится к составлению уравнений балансов для элементарных объемов на основе законов сохранения массы, энергии, импульса. К этой системе прибавляются уравнение баланса энергии, а также феноменологические уравнения потоков массы, импульсов и энергии, выраженные через градиент термодинамических параметров.
К законам сохранения относят закон сохранения массы k-го компонента:
(9.5.1)
где k = 1, 2, ..., п, pkvk – поток, рк – плотность, vk – массовая скорость потока частиц k-го компонента (средняя скорость переноса массы). Для суммарной плотности закон сохранения имеет вид
.
При концентрации какого-либо компонента Nk = pk/p закон сохране-ния массы
,
(9.5.2)
где Jk = pk(vk — v) — диффузионный поток,
– полная производная
по времени.
Закон сохранения импульса, примененный к элементарному объему, позволяет получить основные уравнения гидродинамики (уравнения Навье – Стокса):
(9.5.3)
где vα – декартовые коненты скорости v,
рαβ = р∙δαβ + παβ – тензор напряжений,
Р – давление,
δαβ – символ Кронекера,
Fkα – объемная сила,
παβ – тензор вязких напряжений.
Уравнения Навье – Стокса применяют при изучении течения реальных жидкостей и газов. Эти уравнения нелинейные, и точные решения находятся лишь для чаcтных случаев.
Закон сохранения энергии для элементарных объемов представляет собой первое начало термодинамики.
Уравнение баланса энергий имеет вид
(9.5.4)
где
Jq
– поток тепла,
–
работа внутренних напряжений,
– работа
внешних сил.
Таким образом, внутренняя энергия pu не сохраняется, а сохраняется лишь полная энергия. Уравнение баланса энтропии можно записать в виде
,
(9.5.5)
где s
– величина, характеризующая локальное
производство энтропии и опре-деляемая
как
, Ji
—
потоки, Xi.
—
силы, dA
—
элемент поверх-ности системы. В нашем
случае s ≥ 0.
Величины JkXk
могут
быть векторами (тепло-проводность,
диффузия), скалярами (общая вязкость,
скорость химических реакций).
Термодинамический потенциал Тds
=
du
+
р
dv
–
Σ μk dck
для
эле-мента массы по траектории его центра
масс примет вид
,
где все производные по времени являются полными. Локальное произ-водство энтропии вызывает необратимые процессы теплопроводности, диффузии, вязкости.
Для описания неравновесных систем И. Р. Пригожий предложил ввес-ти понятие локального термодинамического равновесия. Если процессы, возмущающие равновесие в малом объеме, менее интенсивны, чем процессы, которые формируют равновесие, то говорят о локальном равновесии.
Принцип локального равновесия является постулатом.
Феноменологические уравнение описывает малые отклонения систе-мы от термодинамического равновесия. Возникающие потоки линейно зависят от термодинамических сил и описываются феноменологическими уравнениями типа
(9.5.6)
где Lik — коэффициенты переноса, а термодинамическая сила Хk вызывает поток Jk. Например, градиент температуры вызывает поток тепла (теплопро-водность), градиент концентрации – поток вещества, градиент скорости – поток импульса, электрическое поле – электрический ток и т. п.
Уравнение (9.5.6) называют также термодинамическим уравнением движения. Гипотеза о линейной связи потоков и термодинамических сил лежит в основе термодинамики необратимых процессов.
Термодинамическая сила может вызывать ток Jik, где i ≠ k. Например, градиент температуры может вызвать поток вещества в многокомпонентных системах. Такие процессы называются перекрестными, они характеризуются коэффициентом Lik при i ≠ k. В этом случае производство энтропии имеет вид
.
(9.5.7)
В соответствии с теоремой Пригожина в стационарном состоянии величина s минимальна при заданных внешних условиях, препятствующих достижению равновесия.
В состоянии термодинамического равновесия s = 0. Соотношения термодинамики неравновесных процессов используются для объяснения многочисленных неравновесных явлений, например, термодинамических явлений, гальваномагнитных явлений, термогальваномаггнитных явлений. Создаются теоретические основы для исследования открытых систем.
В области линейности необратимых процессов матрица феноменоло-гических коэффициентов симметрична
Lik = Lki
Это соотношение взаимности Онзагера. или соотношение симметрии. Другими словами, возрастание потока Jk, вызванное увеличением на единицу силы Хi, равно возрастанию потока Ji, обусловленному увеличением на единицу силы Хk.
Соотношение взаимности сыграло громадную роль в становлении термодинамики необратимых процессов.