
- •Содержание
- •Тема 1. Введение. Твердое тело. Силы
- •1.1 Введение 9
- •Тема 2. Строение твердого тела 23
- •Тема 3. Дефекты. Роль дефектов в твердом теле 57
- •3.2. Точечные дефекты решетки 57
- •Тема 4. Диаграммы состояния двухкомпонентных
- •Тема 5. Некоторые положения квантовой механики 99
- •Тема 6. Элементы зонной теории твердого тела. Взгляд на строение атома и твердого тела с позиций квантовой механики 119
- •Тема 7. Полупроводники. Собственный полупро-
- •Тема 8 . Размерное квантование и квантово-размер-
- •Тема 9. Основные положения термодинамики, механизмы роста пленок и образование зародышей 192
- •Тема 10. Технология получения, механизмы и режимы роста гетероэпитаксиальных структур 232
- •Тема 11. Методы получения нанообъектов и квантово-размерных структур 267
- •Тема 12. Методы исследования наноматериалов 341
- •Тема 1. Введение. Твердое тело. Силы взаимодействия. Типы связи.
- •1.1. Введение
- •1.2. Твердое тело. Силы взаимодействия. Типы связи.
- •Тема 2. Строение твердого тела. Цели и задачи изучения темы:
- •2.1. Кристалл.
- •2.2. Решетка Бравэ. Трансляция. Элементарная ячейка.
- •2.3.Элементы симметрии.
- •2.4. Группы симметрии. Сингонии.
- •2.5. Плотнейшие упаковки частиц в структурах.
- •2.6. Жидкие кристаллы.
- •2.7.Наночастицы с гранецентрированной решеткой. Кубоктаэдр.
- •Элементы симметрии.
- •Тема 3. Дефекты. Роль дефектов в твердом теле.
- •3.1. Дефекты кристаллических решеток.
- •3.2. Точечные дефекты решетки
- •3.3. Линейные дефекты кристаллической решетки.
- •3.4 Поверхностные дефекты кристаллической решетки.
- •3.5. Объёмные дефекты кристаллической решетки.
- •3.6. Энергетические дефекты кристаллической решетки.
- •3.7. Твёрдые растворы
- •Поверхностные дефекты кристаллической решетки.
- •Тема 4. Диаграммы состояния двухкомпонентных систем.
- •4.1. Типы диаграмм состояния.
- •Тема 5. Некоторые положения квантовой механики.
- •5.1.Возникновение квантовой механики.
- •5.2. Волновая функция ψ. Плотность вероятности.
- •5.3. Соотношение неопределенности Гейзенберга.
- •5.4. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний.
- •5.5. Принцип причинности в квантовой механике.
- •5.6. Движение свободной частицы
- •5.7. Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками».
- •5.8. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- •5.9. Линейный гармонический осциллятор в квантовой механике.
- •Принцип причинности в квантовой механике.
- •Движение свободной частицы.
- •Тема 6. Элементы зонной теории твердого тела. Взгляд на строение атома и твердого тела с позиций квантовой механики.
- •6.1. Взгляд на строение атома и твердого тела с позиций кванто-вой механики.
- •6.1.1. Современный взгляд на строение и свойства
- •6.1.2. Взгляд на строение атома с позиций квантовой механики.
- •6.2. Элементы зонной теории.
- •6.2.1.Основные положения зонной теории.
- •6.2.2. Волновая функция электрона в периодическом поле.
- •6.2. 3. Зоны Бриллюэна.
- •6.2.4. Методы расчета энергетической структуры кристаллов.
- •6.2.4.1. Приближение сильносвязанных электронов.
- •6.2.4.2. Приближение свободных электронов. Энергетический спектр электронов в прямоугольной потенциальной яме.
- •6.2.4.3. Приближение слабосвязанных электронов.
- •6.2.5. Модель Кронига – Пенни.
- •6.2.6. Заполнение зон электронами. Металлы, диэлектрики, полупроводники.
- •Тема 7. Полупроводники. Собственный полупроводник. Генерация и рекомбинация носителей зарядов. Уровень Ферми. Эффективная масса носителя заряда. Примесный полупроводник. Цели и задачи изучения темы:
- •7.1. Полупроводники.
- •7.2.Собственные и примесные полупроводники. Носители заряда в полупроводниках.
- •7.3. Энергия Ферми.
- •7.4. Генерация и рекомбинация носителей зарядов.
- •7.5. Собственная проводимость полупроводника.
- •7.6. Примесные полупроводники.
- •7.6.1. Примесные уровни.
- •7.6.2. Примесная проводимость полупроводников.
- •7.6.3. Полупроводник р-типа.
- •7 .6.4. Сильно легированный полупроводник. Роль беспорядка в кристалле.
- •7.7. Температурная зависимость проводимости примесных полупроводников.
- •7.8. Дрейфовый и диффузионный токи в полупроводнике.
- •А плотность дырочного дрейфового тока
- •Вопросы для повторения:
- •Резюме по теме:
- •Тема 8 . Размерное квантование и квантово-размерные структуры.
- •8.1. Принцип размерного квантования
- •8.2. Условия наблюдения квантовых размерных эффектов.
- •8.3. Структуры с двумерным электронным газом.
- •8.4. Структуры с одномерным электронным газом (квантовые нити).
- •8.5. Структуры с нуль-мерным электронным газом
- •8.6. Структуры с вертикальным переносом.
- •Тема 9. Основные положения термодинамики, механизмы роста пленок и образование зародышей.
- •9.1. Основные понятия термодинамики.
- •9.2. Три начала термодинамики.
- •9.3. Термодинамические потенциалы.
- •9.4. Термодинамическая теория фазовых равновесий.
- •9.4.1. Термодинамические системы.
- •9.4.2. Условия фазового равновесия.
- •9.4.3. Фазовые переходы.
- •9.5. Принцип локального равновесия.
- •9.6. Самоорганизация систем.
- •9.7. Поверхностные явления.
- •9.7.1. Поверхностная энергия.
- •9.7.2. Поверхностное натяжение.
- •9.7.3. Капиллярные явления.
- •9.7.4. Адсорбция, десорбция и испарение с поверхности.
- •9.8. Массоперенос и ионизация на поверхности.
- •9.8.1. Массоперенос и ионизация на поверхности.
- •9.8.2. Межфазные характеристики.
- •9.9. Механизмы роста пленок на реальных подложках.
- •Тема 10. Технология получения, механизмы и режимы роста гетероэпитаксиальных структур.
- •10.1. Гетерогенные процессы формирования наноструктур
- •10.1.1. Молекулярно-лучевая эпитаксия.
- •10.2. Газовая эпитаксия из металлоорганических соединений.
- •10.3. Метод нанолитографии.
- •10.4. Самоорганизация квантовых точек и нитей.
- •10.4.1. Режимы роста гетероэпитаксиальных структур.
- •10.4.2. Рост наноструктур на фасетированных поверхностях.
- •10.4.3. Трехмерные массивы когерентно-напряженных островков.
- •10.4.4. Поверхностные структуры плоских упругих доменов.
- •1 0.4.5. Структуры с периодической модуляцией состава в эпи-таксиальных пленках твердых растворов полупроводников.
- •1 0.5. Изготовление наноструктур и наноприборов с помощью стм и асм.
- •Тема 11. Методы получения нанообъектов и квантоворазмерных структур.
- •11.1. Коллоидная и золь-гельная технология.
- •11.1.1. Формирование структур на основе коллоидных растворов.
- •11.1.2. Организация и самоорганизация коллоидных структур.
- •11.1.3. Оптические и электронные свойства коллоидных кластеров.
- •11.1.4. Коллоидные кристаллы. Формирование упорядоченных наноструктур.
- •11.1.5. Золь-гель технология.
- •11.1.6. Методы молекулярного наслаивания и
- •11.1.7. Методы получения металлов и диэлектриков.
- •11.2. Методы получения упорядоченных наноструктур. Гетероструктуры.
- •11.2.1. Гетероструктуры – основа получения наноструктур.
- •11.2.2. Формирование полупроводниковых и металлических нановолокон и спиралей.
- •11.2.3 Самоорганизация при эпитаксиальном росте.
- •12.2.3.1. Наногофрированные структуры.
- •11.2.3.2. Самоорганизация гетероэпитаксиальных структур.
- •11.3. Пучковые методы нанолитографии.
- •11.3.1. Литографические методы формирования структур.
- •11.3.2. Оптическая литография.
- •11.3.3. Рентгеновская литография.
- •11.3.4. Электронная литография.
- •11.3.5. Ионная литография.
- •11.3.6. Возможности пучковых методов нанолитографии в наноэлектронике.
- •11.3.7. Нанопечатная литография.
- •11.3.8. Ионный синтез квантовых наноструктур.
- •11.4. Рост на активированных поверхностях. Нановискеры.
- •11.5. Методы зондовой нанотехнологии.
- •11.5.1. Физические основы зондовой нанотехнологии.
- •11.5.2. Контактное формирование нанорельефа.
- •11.5.3. Бесконтактное формирование нанорельефа.
- •11.5.4. Локальная глубинная модификация поверхности.
- •11.5.5. Межэлектродный массоперенос.
- •11.5.6. Локальное анодное окисление.
- •11.5.8. Совместное использование лазера и стм
- •Тема 12. Методы исследования наноматериалов.
- •12.1. Введение.
- •12.2. Методы исследования химического состава поверхности.
- •12.2.1. Масс-спектроскопия.
- •12.2.3. Ионная масс-спектроскопия.
- •12.2.4. Фотоэлектронная спектроскопия.
- •12.2.5. Радиоспектроскопия.
- •12.3. Исследования физической структуры поверхности.
- •12.3.1. Рентгеноструктурный анализ.
- •12.3.2. Рентгеновская спектроскопия и дифракция.
- •1 2.3.2.1. Рассеяние на аморфных и частично упорядоченных объектах. Малоугловое рентгеновское рассеяние.
- •12.3.2.2. Рентгеновская спектроскопия поглощения: exafs, xans, nexafs.
- •12.3.3. Анализ поверхности электронным пучком.
- •12.3.4. Полевая эмиссионная микроскопия.
- •12.3.5. Сканирующая зондовая микроскопия.
- •12.3.5.1. Сканирующая туннельная микроскопия.
- •12.3.5.2. Атомно-силовая микроскопия.
- •12.3.6. Магнито – силовая микроскопия.
- •12.3.7. Электронная микроскопия.
- •12.3.8. Эллипсометрия.
- •12.4. Спектроскопия.
- •12.4.1. Инфракрасная и рамановская спектроскопия.
- •12.4.2. Фотоэмиссия и рентгеновская спектроскопия.
- •12.5. Методы исследования кинетических свойств объема и поверхности наноматериалов и наноструктур.
- •12.5.1. Исследование удельного сопротивления.
- •12.5.2. Диагностика поверхностных состояний.
- •12.5.3. Кинетические параметры.
5.5. Принцип причинности в квантовой механике.
Из соотношения неопределенностей часто делают вывод о непримени-мости принципа причинности к явлениям, происходящим в микромире.
Однако никакого нарушения принципа причинности применительно к микрообъектам не наблюдается, поскольку в квантовой механике понятие со-стояния микрообъекта приобретает совершенно иной смысл, чем в классси-ческой механике. В квантовой механике состояние микрообъекта полностью определяется волновой функцией Ψ(x,y,z,t), квадрат модуля которой |Ψ(x,y,z,t)|2 задает плотность вероятности нахождения частицы в точке с координатами х, у, z.
В свою очередь, волновая функция Ψ(x,y,z,t) удовлетворяет уравнению Щредингера (5.4.1), содержащему первую производную функции Ψ по времени. Это же означает, что задание функции Ψо (для момента времени t0) определяет ее значение в последующие моменты. Следовательно, в кванто-вой механике начальное состояние Ψо есть причина, а состояние Ψ в последующий момент — следствие. Это и есть форма принципа причинности в квантовой механике, т.е. задание функции Ψо предопределяет ее значения для любых последующих моментов. Таким образом, состояние системы микрочастиц, определенное в квантовой механике, однозначно вытекает из предшествующего состояния, как того требует принцип причинности.
5.6. Движение свободной частицы
Свободная частица — частица, движущаяся в отсутствие внешних полей. Так как на свободную частицу (пусть она движется вдоль оси х) силы не действуют, то потенциальная энергия частицы U(x) = const и ее можно принять равной нулю. Тогда полная энергия частицы совпадает с ее кинети-ческой энергией. В таком случае уравнение Шредингера (5.4.5) для стационарных состояний примет вид
(5.6.1)
Прямой подстановкой можно убедиться в том, что частным решением уравнения (5.6.1) является функция и Ψ(х) = Aeikx, где А = const и k = const, с собственным значением энергии
(5.6.2)
Функция
представляет
собой только коор-динатную часть волновой
функции Ψ(x,t).
Поэтому
зависящая от времени волновая функция,
согласно (5.4.4),
(5.6.3)
(здесь
и
).
Функция (5.6.3) представляет собой плоскую монохроматическую волну де Бройля [см. (5.4.2)].
Из
выражения (5.6.2) следует, что зависимость
энергии от импульса
оказывается обычной для нерелятивистских
частиц. Следовательно, энергия
свободной
частицы может принимать любые
значения (так
как волновое число k
может
принимать любые положительные значения),
т. е. энергетический спектр
свободной
частицы является непре-рывным.
Таким образом, свободная квантовая частица описывается плоской монохроматической волной де Бройля. Этому соответствует не зависящая от времени плотность вероятности обнаружения частицы в данной точке пространства
,
т. е. все положения свободной частицы в пространстве являются равно-вероятными.
5.7. Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками».
Проведем качественный анализ решений уравнения Шредингера при-менительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)
,
где l – ширина «ямы», а энергия отсчитывается от ее дна (рис. 5.7.1).
У
равнение
Шредингера (5.4.5) для стационарных
состояний в случае одномерной задачи
запишется в виде
(5.7.1)
По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следо-вательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х = 0 и х = l) непрерывная волновая функция также должна обра-щаться в нуль. Следовательно, граничные условия в данном случае имеют вид
(5.7.2)
В пределах «ямы» (0 ≤ х ≤ l) уравнение Шредингера (5.7.1) сведется к уравнению
или
,
(5.7.3)
где
(5.7.4)
Общее решение дифференциального уравнения (5.7.3):
Так как по (5.7.2) ψ(0) = 0, то В = 0.
Тогда
(5.7.5)
Условие
(5.7.2)
выполняется
только при kl = πn,
где
n – целые
числа, т. е. необходимо, чтобы
.
(5.7.6)
Из выражений (5.7.4) и (5.7.6) следует, что
(5.7.7)
т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях Еп, зависящих от целого числа n. Следова-тельно, энергия Еп частицы в «потенциальной яме» с бесконечно высокими «стенками» принимает определенные дискретные значения, т.е. квантуется.
Квантованные значения энергии Еп называются уровнями энергии, а число п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне Еп, или, как говорят, частица находится в квантовом состоянии п.
Подставив в (5.7.5) значение k из (5.7.6), найдем собственные функции:
Постоянную интегрирования А найдем из условия нормировки (5.2.4), которое для данного случая запишется в виде:
В
результате интегрирования получим
,
а собственные функ-ции будут иметь вид
.
(5.7.8)
Графики
собственных функций (5.7.8), соответствующие
уровням энергии (5.7.7)при п=1,2,3,
приведены на рис. 5.7.2, а.
На
рис. 5.7.2, б
изобра-жена плотность вероятности
обнаружения частицы на различных
расстояни-ях от «стенок» ямы, равная
для
п = 1, 2
и 3. Из рисунка следует, что, например, в
квантовом состоянии с п = 2
частица не может на-ходиться в середине
«ямы», в то время как одинаково часто
может пребывать в ее левой и правой
частях. Такое поведение частицы указывает
на то, что представления о траекториях
частицы в квантовой механике несостоятельны.
И
з
выражения (5.7.7) вытекает, что энергетический
интервал между двумя соседними уровнями
равен
(5.7.9)
Например, для электрона при размерах ямы l = 10 -1 м (свободные электроны в металле) ∆Еп ≈ 10 -35п Дж ≈ 10 -16n эВ, т. е. энергетические уров-ни расположены столь тесно, что спектр практически можно считать непре-рывным. Если же размеры ямы соизмеримы с атомными (l ≈ 10 -10м), то для электрона ∆Еп ≈ 10 -17п Дж ≈ 10 2n эВ, т. е. получаются явно дискретные зна-чения энергии (линейчатый спектр).
Таким образом, применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками» приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.
Кроме
того, квантовомеханическое рассмотрение
данной задачи приводит к выводу, что
частица «в потенциальной яме» с бесконечно
высокими «стенками» не может иметь
энергию меньше минимальной, равной
[см.
формулу (5.7.7)].
Наличие
отличной от нуля минимальной энергии
не случайно и выте-кает из соотношения
неопределенностей. Неопределенность
координаты ∆х
частицы
в «яме» шириной l
равна ∆х = l.
Тогда,
согласно соотношению неопределенностей,
импульс не может иметь точное, в данном
случае нуле-вое, значение. Неопределенность
импульса
.
Такому разбросу значений импульса
соответствует кинетическая энергия
.
Все остальные уровни (n > 1) имеют энергию, превышающую это мини-мальное значение.
Из формул (5.7.9) и (5.7.7) следует, что при больших квантовых числах (n >> 1)
,
т. е. соседние уровни расположены тесно: тем теснее, чем больше п. Если п очень велико, то можно говорить о практически непрерывной последова-тельности уровней и характерная особенность квантовых процессов – диск-ретность – сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.
Более общая трактовка принципа соответствия: всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применения, причем в определенных предельных случаях новая теория переходит в старую.