
- •Содержание
- •Тема 1. Введение. Твердое тело. Силы
- •1.1 Введение 9
- •Тема 2. Строение твердого тела 23
- •Тема 3. Дефекты. Роль дефектов в твердом теле 57
- •3.2. Точечные дефекты решетки 57
- •Тема 4. Диаграммы состояния двухкомпонентных
- •Тема 5. Некоторые положения квантовой механики 99
- •Тема 6. Элементы зонной теории твердого тела. Взгляд на строение атома и твердого тела с позиций квантовой механики 119
- •Тема 7. Полупроводники. Собственный полупро-
- •Тема 8 . Размерное квантование и квантово-размер-
- •Тема 9. Основные положения термодинамики, механизмы роста пленок и образование зародышей 192
- •Тема 10. Технология получения, механизмы и режимы роста гетероэпитаксиальных структур 232
- •Тема 11. Методы получения нанообъектов и квантово-размерных структур 267
- •Тема 12. Методы исследования наноматериалов 341
- •Тема 1. Введение. Твердое тело. Силы взаимодействия. Типы связи.
- •1.1. Введение
- •1.2. Твердое тело. Силы взаимодействия. Типы связи.
- •Тема 2. Строение твердого тела. Цели и задачи изучения темы:
- •2.1. Кристалл.
- •2.2. Решетка Бравэ. Трансляция. Элементарная ячейка.
- •2.3.Элементы симметрии.
- •2.4. Группы симметрии. Сингонии.
- •2.5. Плотнейшие упаковки частиц в структурах.
- •2.6. Жидкие кристаллы.
- •2.7.Наночастицы с гранецентрированной решеткой. Кубоктаэдр.
- •Элементы симметрии.
- •Тема 3. Дефекты. Роль дефектов в твердом теле.
- •3.1. Дефекты кристаллических решеток.
- •3.2. Точечные дефекты решетки
- •3.3. Линейные дефекты кристаллической решетки.
- •3.4 Поверхностные дефекты кристаллической решетки.
- •3.5. Объёмные дефекты кристаллической решетки.
- •3.6. Энергетические дефекты кристаллической решетки.
- •3.7. Твёрдые растворы
- •Поверхностные дефекты кристаллической решетки.
- •Тема 4. Диаграммы состояния двухкомпонентных систем.
- •4.1. Типы диаграмм состояния.
- •Тема 5. Некоторые положения квантовой механики.
- •5.1.Возникновение квантовой механики.
- •5.2. Волновая функция ψ. Плотность вероятности.
- •5.3. Соотношение неопределенности Гейзенберга.
- •5.4. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний.
- •5.5. Принцип причинности в квантовой механике.
- •5.6. Движение свободной частицы
- •5.7. Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками».
- •5.8. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- •5.9. Линейный гармонический осциллятор в квантовой механике.
- •Принцип причинности в квантовой механике.
- •Движение свободной частицы.
- •Тема 6. Элементы зонной теории твердого тела. Взгляд на строение атома и твердого тела с позиций квантовой механики.
- •6.1. Взгляд на строение атома и твердого тела с позиций кванто-вой механики.
- •6.1.1. Современный взгляд на строение и свойства
- •6.1.2. Взгляд на строение атома с позиций квантовой механики.
- •6.2. Элементы зонной теории.
- •6.2.1.Основные положения зонной теории.
- •6.2.2. Волновая функция электрона в периодическом поле.
- •6.2. 3. Зоны Бриллюэна.
- •6.2.4. Методы расчета энергетической структуры кристаллов.
- •6.2.4.1. Приближение сильносвязанных электронов.
- •6.2.4.2. Приближение свободных электронов. Энергетический спектр электронов в прямоугольной потенциальной яме.
- •6.2.4.3. Приближение слабосвязанных электронов.
- •6.2.5. Модель Кронига – Пенни.
- •6.2.6. Заполнение зон электронами. Металлы, диэлектрики, полупроводники.
- •Тема 7. Полупроводники. Собственный полупроводник. Генерация и рекомбинация носителей зарядов. Уровень Ферми. Эффективная масса носителя заряда. Примесный полупроводник. Цели и задачи изучения темы:
- •7.1. Полупроводники.
- •7.2.Собственные и примесные полупроводники. Носители заряда в полупроводниках.
- •7.3. Энергия Ферми.
- •7.4. Генерация и рекомбинация носителей зарядов.
- •7.5. Собственная проводимость полупроводника.
- •7.6. Примесные полупроводники.
- •7.6.1. Примесные уровни.
- •7.6.2. Примесная проводимость полупроводников.
- •7.6.3. Полупроводник р-типа.
- •7 .6.4. Сильно легированный полупроводник. Роль беспорядка в кристалле.
- •7.7. Температурная зависимость проводимости примесных полупроводников.
- •7.8. Дрейфовый и диффузионный токи в полупроводнике.
- •А плотность дырочного дрейфового тока
- •Вопросы для повторения:
- •Резюме по теме:
- •Тема 8 . Размерное квантование и квантово-размерные структуры.
- •8.1. Принцип размерного квантования
- •8.2. Условия наблюдения квантовых размерных эффектов.
- •8.3. Структуры с двумерным электронным газом.
- •8.4. Структуры с одномерным электронным газом (квантовые нити).
- •8.5. Структуры с нуль-мерным электронным газом
- •8.6. Структуры с вертикальным переносом.
- •Тема 9. Основные положения термодинамики, механизмы роста пленок и образование зародышей.
- •9.1. Основные понятия термодинамики.
- •9.2. Три начала термодинамики.
- •9.3. Термодинамические потенциалы.
- •9.4. Термодинамическая теория фазовых равновесий.
- •9.4.1. Термодинамические системы.
- •9.4.2. Условия фазового равновесия.
- •9.4.3. Фазовые переходы.
- •9.5. Принцип локального равновесия.
- •9.6. Самоорганизация систем.
- •9.7. Поверхностные явления.
- •9.7.1. Поверхностная энергия.
- •9.7.2. Поверхностное натяжение.
- •9.7.3. Капиллярные явления.
- •9.7.4. Адсорбция, десорбция и испарение с поверхности.
- •9.8. Массоперенос и ионизация на поверхности.
- •9.8.1. Массоперенос и ионизация на поверхности.
- •9.8.2. Межфазные характеристики.
- •9.9. Механизмы роста пленок на реальных подложках.
- •Тема 10. Технология получения, механизмы и режимы роста гетероэпитаксиальных структур.
- •10.1. Гетерогенные процессы формирования наноструктур
- •10.1.1. Молекулярно-лучевая эпитаксия.
- •10.2. Газовая эпитаксия из металлоорганических соединений.
- •10.3. Метод нанолитографии.
- •10.4. Самоорганизация квантовых точек и нитей.
- •10.4.1. Режимы роста гетероэпитаксиальных структур.
- •10.4.2. Рост наноструктур на фасетированных поверхностях.
- •10.4.3. Трехмерные массивы когерентно-напряженных островков.
- •10.4.4. Поверхностные структуры плоских упругих доменов.
- •1 0.4.5. Структуры с периодической модуляцией состава в эпи-таксиальных пленках твердых растворов полупроводников.
- •1 0.5. Изготовление наноструктур и наноприборов с помощью стм и асм.
- •Тема 11. Методы получения нанообъектов и квантоворазмерных структур.
- •11.1. Коллоидная и золь-гельная технология.
- •11.1.1. Формирование структур на основе коллоидных растворов.
- •11.1.2. Организация и самоорганизация коллоидных структур.
- •11.1.3. Оптические и электронные свойства коллоидных кластеров.
- •11.1.4. Коллоидные кристаллы. Формирование упорядоченных наноструктур.
- •11.1.5. Золь-гель технология.
- •11.1.6. Методы молекулярного наслаивания и
- •11.1.7. Методы получения металлов и диэлектриков.
- •11.2. Методы получения упорядоченных наноструктур. Гетероструктуры.
- •11.2.1. Гетероструктуры – основа получения наноструктур.
- •11.2.2. Формирование полупроводниковых и металлических нановолокон и спиралей.
- •11.2.3 Самоорганизация при эпитаксиальном росте.
- •12.2.3.1. Наногофрированные структуры.
- •11.2.3.2. Самоорганизация гетероэпитаксиальных структур.
- •11.3. Пучковые методы нанолитографии.
- •11.3.1. Литографические методы формирования структур.
- •11.3.2. Оптическая литография.
- •11.3.3. Рентгеновская литография.
- •11.3.4. Электронная литография.
- •11.3.5. Ионная литография.
- •11.3.6. Возможности пучковых методов нанолитографии в наноэлектронике.
- •11.3.7. Нанопечатная литография.
- •11.3.8. Ионный синтез квантовых наноструктур.
- •11.4. Рост на активированных поверхностях. Нановискеры.
- •11.5. Методы зондовой нанотехнологии.
- •11.5.1. Физические основы зондовой нанотехнологии.
- •11.5.2. Контактное формирование нанорельефа.
- •11.5.3. Бесконтактное формирование нанорельефа.
- •11.5.4. Локальная глубинная модификация поверхности.
- •11.5.5. Межэлектродный массоперенос.
- •11.5.6. Локальное анодное окисление.
- •11.5.8. Совместное использование лазера и стм
- •Тема 12. Методы исследования наноматериалов.
- •12.1. Введение.
- •12.2. Методы исследования химического состава поверхности.
- •12.2.1. Масс-спектроскопия.
- •12.2.3. Ионная масс-спектроскопия.
- •12.2.4. Фотоэлектронная спектроскопия.
- •12.2.5. Радиоспектроскопия.
- •12.3. Исследования физической структуры поверхности.
- •12.3.1. Рентгеноструктурный анализ.
- •12.3.2. Рентгеновская спектроскопия и дифракция.
- •1 2.3.2.1. Рассеяние на аморфных и частично упорядоченных объектах. Малоугловое рентгеновское рассеяние.
- •12.3.2.2. Рентгеновская спектроскопия поглощения: exafs, xans, nexafs.
- •12.3.3. Анализ поверхности электронным пучком.
- •12.3.4. Полевая эмиссионная микроскопия.
- •12.3.5. Сканирующая зондовая микроскопия.
- •12.3.5.1. Сканирующая туннельная микроскопия.
- •12.3.5.2. Атомно-силовая микроскопия.
- •12.3.6. Магнито – силовая микроскопия.
- •12.3.7. Электронная микроскопия.
- •12.3.8. Эллипсометрия.
- •12.4. Спектроскопия.
- •12.4.1. Инфракрасная и рамановская спектроскопия.
- •12.4.2. Фотоэмиссия и рентгеновская спектроскопия.
- •12.5. Методы исследования кинетических свойств объема и поверхности наноматериалов и наноструктур.
- •12.5.1. Исследование удельного сопротивления.
- •12.5.2. Диагностика поверхностных состояний.
- •12.5.3. Кинетические параметры.
3.6. Энергетические дефекты кристаллической решетки.
Один или несколько атомов в кристаллической решетке могут обладать повышенной энергией. В этом случае говорят об энергетических дефектах кристаллической решетки. К энергетическим дефектам решетки относятся: дырки квазичастицы (носители единичного положительного заряда), лока-лизованные электроны, пары электрон дырка или экситоны (возбужденные атомы), фононы кванты колебаний кристаллической решетки.
При поглощении атомом энергии, достаточной для возбуждения электрона и образования дырки, но недостаточной для переноса электрона на относительно большое расстояние от дырки, возникает пара электрон-дырка, или экситон. Экситоны электрически нейтральны, поэтому их движение не приводит к переносу заряда, однако перемещение экситонов ведет к переносу энергии. При взаимной рекомбинации дырки и электрона выделяется квант электромагнитной энергии, который, поглощаясь каким-либо ионом, вновь приводит к образованию экситона. Поскольку в состав экситона входит свободный электрон, то при появлении в кристаллической решетке экситонов прозрачность кристалла для электромагнитного излучения падает.
В процессе тепловых колебаний атомы связно смещаются относи-тельно положений равновесия. По кристаллу движутся упругие волны теплового возбуждения. Подобно тому, как волны электромагнитного излу-чения трактуются с точки зрения квантовой физики как частицы фотоны, тепловые волны можно рассматривать как квазичастицы упругих колебаний фононы. Перемещение фононов приводит к переносу тепловой энергии и определяет теплопроводность материалов. В металлических материалах подвижность фононов существенно выше по сравнению с неметаллическими. Это связано с тем, что смещение положительно заряженного иона из положе-ния равновесия вызывает локальное изменение электрического поля и смещение электронов. В свою очередь, смещение электронов приводит к смещению ионов. В итоге электрон фононного взаимодействия подвиж-ность фононов, а следовательно, и теплопроводность металлических матери-алов оказывается существенно выше, чем у неметаллических материалов. Любое изменение структуры металлических материалов, приводящее к затруднению распространения электронных волн (легирование, измельчение зерен, повышение плотности дислокаций), соответственно понижает теплопроводность металлических материалов.
Взаимодействие и перемещение дислокаций – атомы в районе дисло-каций окружены силовыми полями, которые взаимодействуют между собой. Дислокации, находясь в одной плоскости скольжения, могут притягиваться (разноименные) и взаимно уничтожаться, а имеющие одноименный знак – отталкиваться. Возможно перемещение дислокаций из одной плоскости скольжения в другую, особенно это касается расщепленных дислокаций. При переходе дислокаций требуется большие дополнительные затраты энергии, при этом движение дислокаций замедляется, а металл упрочняется. Дисло-кации могут быть "сидячими", тогда двигающиеся навстречу дислокации оказываются запертыми.
3.7. Твёрдые растворы
Твердые растворы образуются в том случае, когда атомы различных элементов, смешиваясь в разных соотношениях, способны образовывать общую кристаллическую решетку. В настоящее время твердо установлено, что все элементы и соединения обнаруживают некоторую растворимость в твердом состоянии, причем большой интерес представляет вопрос о вели-чине растворимости в каждом конкретном случае.
Встречаются случаи ограниченной, довольно значительной (в нес-колько атомных процентов) и неограниченной взаимной растворимости компонентов. Неограниченная взаимная растворимость в твердом состоянии возможна при наличии одинаковой кристаллической структуры у компо-нентов, однако это условие является необходимым, но не достаточным (примером этого может служить система Си – Ag). При образовании непре-рывного ряда твердых растворов между компонентами, имеющими гексаго-нальную плотноупакованную структуру с различным отношением осей с/а, обычно происходит постепенное изменение этого отношения от одного компонента к другому. Например, в системе Ti – Zr отношение осей изме-няется от с/а = 1,5873 (для титана) до с/а = 1,5931 (для циркония) или в системе Mg – Cd – от с/а = 1,6235 (для магния) до с/а = 1,8865 (для кадмия).
Т
вердые
растворы могут быть образованы как
между элементами, так и между химическими
соединениями. Такие фазы часто
простираются в широ-ком интервале
концентраций и имеют большое
сходство с твердыми растворами, которые
образуются при
сплавлении чистых металлов друг с
другом.
Твердые растворы являются фазами
переменного состава и
в принципе могут быть образованы любым
числом сплавляемых компонентов.
Однако для простоты, в качестве примера,
удобно рассматривать
двой-ные сплавы.
В тех случаях, когда компоненты могут
замещать
друг друга в кристаллической решетке
в любых соотношениях,
образуется непрерывный ряд твердых
растворов.
Например, при замещении в
решетке чистой меди атомов меди никелем
образуются твердые растворы
замещения. Очень часто,
(но не всегда) эти растворы имеют ту же
структуру, что
и компоненты, на основе которых они
образуются.
Если размеры атомов компонентов,
принимающих участие в
образовании твердых растворов, существенно
отличаются друг
от
друга, то при сплавлении возможно
вне-дрение атомов одного сорта
в пустоты (или междоузлия) кристаллической
решетки, образованной
атомами другого сорта. При этом образуются
твердые
растворы внедрения. Образование подобных
растворов имеет место,
например, при растворении в металлах
неметаллических элементов, таких,
как бор, кислород, азот и углерод.
Твердые растворы, как замещения, так и внедрения могут быть либо неупорядоченными со статистическим распределением атомов в решетке, либо частично или полностью упорядоченными с определенным располо-жением атомов разного сорта относительно друг друга. Полностью упоря-доченные твердые растворы иногда называют сверхструктурами. В некото-рых случаях атомы одного сорта могут стремиться к объединению, образуя скопления в решетке твердого раствора. При этом опять-таки эти скопления могут распределяться либо беспорядочно, либо они могут располагаться в определенном порядке или определенным образом ориентироваться, обра-зуя разновидности сложных сверхструктур в твердых растворах. Схемы, иллюстрирующие различные типы твердых растворов, приведены на рис. 3.7.1.
Хотя в качестве идеализированного примера можно рассматривать образование неупорядоченного твердого раствора, однако эксперимен-тальные данные, полученные в основном при изучении диффузного рассеяния рентгеновских лучей, свидетельствуют о том, что полной неупорядоченности (так же как и идеального кристаллического строе-ния), по всей вероятности, в природе не существует. Твердые растворы, находящиеся в термодинамическом равновесии1), в макроскопическом масштабе можно считать истинно гомогенными, однако при этом они не обязательно являются гомогенными при рассмотрении в атомном масштабе.
Вопросы для повторения