
- •Безпека інформаційно- комунікаційних систем
- •Isbn 966-552-167-5
- •1.1. Термінологія
- •1.1.1. Системи, в яких здійснюється захист інформації
- •1.1.2. Завдання захисту інформації
- •1.1.3. Загрози і вразливості
- •1.1.4. Комплексна система захисту інформації
- •1.1.5. Об'єкти захисту та їхні властивості
- •1.1.6. Розроблення й оцінювання захищених систем
- •1.2. Загрози безпеці інформації
- •1.2.1. Класифікація загроз
- •1.2.2. Перелік типових загроз безпеці
- •1.2.3. Класифікація атак
- •1.2.4. Методика класифікації загроз stride
- •1.2.5. Модель загроз
- •1.3. Порушники
- •1.3.1. Визначення терміну «хакер»
- •1.3.2. Наслідки віддій порушників
- •1.3.3. Модель порушника
- •2.1. Рівні інформаційно-комунікаційної системи
- •2.2. Функціональні сервіси безпеки і механізми, що їх реалізують
- •2.2.1. Таксономія функцій систем захисту
- •2.3. Основні підсистеми комплексу засобів захисту
- •2.3.1. Підсистема керування доступом
- •2.3.2. Підсистема ідентифікації й автентифікації
- •2.3.3. Підсистема аудита
- •Підсистема забезпечення цілісності
- •Криптографічна підсистема
- •3.1. Історична довідка
- •3.2. Основні поняття
- •3.3.1. Симетричне шифрування
- •3.3.2. Асиметричне шифрування
- •4.1. Загальні поняття теорії захисту інформації
- •4.2. Позначення, аксіоми та визначення
- •4.3. Основні типи політик безпеки
- •4.4. Математичні моделі безпеки
- •4.4.1. Моделі дискреційної політики безпеки
- •4.4.2. Моделі мандатної політики безпеки
- •5.1. Передумови виникнення вразливостей у комп'ютерних системах
- •5.2. Класифікація вад захисту
- •5.2.1. Класифікація вад захисту за причиною їх появи
- •5.2.2. Класифікація вад захисту за їх розміщенням у системі
- •5.2.3. Класифікація вад захисту за етапами їх появи
- •5.3. Класифікація помилок, що виникають у процесі програмної реалізації системи
- •5.4. Помилки переповнення буфера
- •5.4.1. Переповнення буфера у стеку
- •5.4.2. Переповнення буфера у статичній або динамічній пам'яті
- •5.4.3. Помилка переповнення в один байт
- •5.5. Помилки оброблення текстових рядків
- •5.5.1. Використання конвеєра
- •5.5.2. Переспрямування введення-виведення
- •5.5.3. Спеціальні символи
- •5.6. Люки
- •5.6.1. Режим debug у програмі sendmail
- •6.1. Класифікація шкідливого програмного забезпечення
- •6.2. Програмні закладки
- •6.2.1. Функції програмних закладок
- •6.2.2. Шпигунські програми
- •6.2.3. «Логічні бомби»
- •6.2.4. Люки — утиліти віддаленого адміністрування
- •6.2.5. Несанкціонована робота з мережею
- •6.2.6. Інші програмні закладки
- •6.3. Комп'ютерні віруси
- •6.3.1. Файлові віруси
- •6.3.2. Завантажувальні віруси
- •6.3.3. Макровіруси
- •6.3.4. Скриптові віруси
- •6.3.5. Захист від комп'ютерних вірусів
- •6.4. Мережні хробаки
- •6.4.1. Класифікація мережних хробаків
- •6.4.2. Хробак Морріса
- •6.4.3. Сучасні мережні хробаки
- •6.5. «Троянські коні»
- •6.5.1. Соціальна інженерія
- •6.5.2. Класифікація «троянських коней»
- •6.5.3. Шпигунські троянські програми
- •6.5.4. Троянські інсталятори
- •6.5.5. «Троянські бомби»
- •6.6. Спеціальні хакерські утиліти
- •6.6.1. Засоби здійснення віддалених атак Засоби проникнення на віддалені комп'ютери
- •6.6.2. Засоби створення шкідливого програмного забезпечення
- •6.6.3. Створення засобів атак
- •7.1. Призначення стандартів інформаційної безпеки
- •7.2. Стандарти, орієнтовані на застосування військовими та спецслужбами
- •7.2.1. «Критерії оцінювання захищених комп'ютерних систем» Міністерства оборони сша
- •7.2.2. Інтерпретація і розвиток tcsec
- •7.2.3. Керівні документи Державної технічної комісії при Президенті Російської Федерації
- •7.3. Стандарти, що враховують специфіку вимог захисту в різних системах
- •7.3.1. Європейські критерії безпеки інформаційних технологій
- •7.4. Стандарти, що використовують
- •7.4.1. Концепція профілю захисту
- •7.4.2. Федеральні критерії безпеки
- •8.1. Законодавча і нормативна база захисту
- •8.1.1. Закон України «Про захист інформації
- •8.1.2. Нормативні документи системи
- •8.2. Оцінювання захищеності інформації,
- •8.2.1. Особливості термінології
- •8.2.2. Критерії захищеності інформації в комп'ютерних системах від несанкціонованого доступу
- •8.2.3. Класифікація автоматизованих систем
- •8.3. Керівні документи з вимогами до захисту інформації в інформаційних системах певних типів
- •8.3.1. Вимоги із захисту конфіденційної інформації
- •8.3.2. Вимоги до захисту інформації веб-сторінки від несанкціонованого доступу
- •9.1. Основні відомості
- •9.2. Базові поняття
- •9.3.2. Оцінювання об'єкта за «Загальною методологію»
- •9.3.3. Матеріали, необхідні для проведення кваліфікаційного аналізу
- •9.3.4. Три етапи здійснення кваліфікаційного аналізу
- •9.4. Структура основних документів «Загальних критеріїв»
- •9.4.1. Профіль захисту
- •9.4.2. Завдання з безпеки
- •1. Вступ.
- •5. Вимоги безпеки.
- •8. Обґрунтування.
- •10.1. Завдання апаратного захисту
- •10.2. Підтримка керування пам'яттю
- •10.2.1. Віртуальні адреси
- •10.2.2. Віртуальна пам'ять
- •10.2.3. Трансляція адрес
- •10.4. Особливості архітектури процесорів Intel х86
- •10.4.2. Селектори та дескриптори сегментів і сторінок
- •10.5.2. Сегментно-сторінковий розподіл пам'яті
- •10.6. Керування задачами
- •10.6.1. Виклик процедур
- •10.6.2. Виклик задач
- •10.6.3. Привілейовані команди
- •11.1. Загрози безпеці операційних систем
- •11.1.1. Сканування файлової системи
- •11.1.2. Викрадення ключової інформації
- •11.1.3. Добирання паролів
- •11.1.4. Збирання сміття
- •11.1.5. Перевищення повноважень
- •11.1.6. Програмні закладки
- •11.1.7. «Жадібні» програми
- •11.2. Поняття захищеної операційної системи
- •11.2.1. Підходи до побудови захищених операційних систем
- •11.2.2. Принципи створення захищених систем
- •11.2.3. Адміністративні заходи захисту
- •11.2.4. Політика безпеки
- •11.3.1. Основні функції кзз
- •11.3.2. Розмежування доступу
- •11.3.3. Ідентифікація, автентифікація й авторизація
- •11.3.4. Аудит
- •12.1. Історія створення unix
- •12.2. Архітектура системи
- •12.3.1. Модель безпеки системи unix
- •12.3.2. Підсистема ідентифікації й автентифікації
- •12.3.3. Підсистема розмежування доступу
- •12.3.4. Підсистема реєстрації
- •12.4. Адміністрування засобів безпеки unix 12.4.1. Особливості адміністрування
- •12.4.2. Утиліти безпеки
- •12.4.3. Характерні вразливості системи unix
- •13.1. Основні відомості про систему
- •13.1.1. Стисло про історію створення системи
- •13.1.2. Відповідність вимогам стандартів безпеки
- •13.2.1. Основні концепції
- •13.2.2. Компоненти системи захисту
- •13.3. Розмежування доступу
- •13.3.1. Основні принципи реалізації системи розмежування
- •13.3.2. Суб'єкти доступу Windows
- •13.3.3. Об'єкти доступу Windows
- •13.3.4. Стандартні настроювання прав доступу
- •13.3.5. Ідентифікація й автентифікація
- •13.3.6. Реалізація дискреційного керування доступом
- •13.4. Аудит
- •14.1. Обґрунтування застосування захищених ос для створення систем оброблення конфіденційної інформації
- •14.2. Система Trusted Solaris
- •14.2.1. Основні характеристики середовища Trusted Solaris
- •14.2.2. Керування доступом у середовищі Trusted Solaris
- •14.2.3. Окреме зберігання позначеної мітками
- •14.2.4. Адміністрування безпеки у середовищі Trusted Solaris
- •14.3. Операційна система Фенікс
- •14.3.1. Архітектура системи
- •14.3.2. Засоби захисту
- •14.3.3. Дискреційна модель ієрархічного керування
- •14.3.4. Засоби керування доступом
- •14.3.5. Перегляд протоколу аудита
- •14.3.5. Програмні інтерфейси системи
- •14.3.7. Застосування операційної системи Фенікс
- •15.1. Основні відомості про комп'ютерні мережі
- •15.1.1. Відкриті системи
- •15.1.2. Модель взаємодії відкритих систем
- •15.1.3. Стеки протоколів
- •15.2. Інтернет
- •15.2.1. Організація
- •15.2.2. Адресація
- •15.2.3. Маршрутизація
- •15.3. Загрози безпеці інформації у мережах
- •15.4. Безпека взаємодії відкритих систем
- •15.4.1. Сервіси безпеки
- •15.4.2. Специфічні механізми безпеки
- •15.4.3. Універсальні механізми безпеки
- •15.4.5. Подальший розвиток міжнародних стандартів
- •16.1. Протоколи прикладного рівня
- •16.1.1. Протокол Telnet
- •16.1.2. Протокол ftp
- •16.1.3. Мережні служби unix
- •16.2. Транспортні протоколи
- •16.2.1. Протокол udp
- •16.2.2. Протокол tcp
- •16.3. Протокол ip
- •16.3.1. Призначення й можливості протоколу iPv4
- •16.3.2. Атаки на протокол iPv4, пов'язані з адресацією Підміна адреси відправника
- •16.3.3. Атаки, що ґрунтуються на помилках оброблення фрагментованих пакетів
- •16.3.4. Можливості, закладені у протокол iPv6
- •16.4.1. Особливості протоколу
- •16.4.2. Модель загроз
- •16.4.3. Механізми захисту
- •16.4.4. Рішення з безпеки
- •Interdomain Route Validation
- •16.4.5. Оцінювання захищеності
- •16.5. Протоколи керування мережею 16.5.1. Протокол ісмр
- •16.5.2. Протокол snmp
- •17.1. Система електронної пошти
- •17.1.1. Архітектура системи електронної пошти
- •17.1.2. Формат повідомлення електронної пошти
- •17.1.3. Протокол smtp
- •17.1.4. Протокол рорз
- •17.1.5. Протокол імар4
- •17.1.6. Загрози, пов'язані з використанням електронної пошти
- •17.1.7. Анонімне відсилання електронної пошти
- •17.1.8. Атаки через систему електронної пошти
- •17.2.1. Принципи веб-технології
- •17.2.2. Протокол http
- •17.2.3. Динамічні сторінки
- •17.2.4. Уразливості серверного програмного забезпечення
- •17.2.5. Уразливості у сценаріях
- •17.2.7. Міжсайтовий скриптінг
- •17.2.8. Захист сервера від атак
- •17.2.9. Атака на клієнта
- •17.2.10. Безпека Java
- •18.1. Архітектура захищених мереж
- •18.1.1. Протидія прослуховуванню трафіку
- •18.1.2. Сегментація мережі
- •18.1.3. Резервування мережного обладнання і каналів зв'язку
- •18.2. Міжмережні екрани
- •18.2.1. Можливості міжмережних екранів
- •18.2.2. Рівні реалізації
- •18.2.3. Особливості персональних брандмауерів
- •18.2.4. Недоліки міжмережного екрана
- •18.3. Системи виявлення атак
- •18.3.1. Можливості систем виявлення атак
- •18.3.2. Різні типи систем виявлення атак
- •18.3.3. Інформаційні джерела
- •18.3.4. Аналіз подій у системах виявлення атак
- •18.3.5. Відповідні дії систем виявлення атак
- •18.4. Додаткові інструментальні засоби
- •18.4.1. Системи аналізу й оцінювання вразливостей
- •18.4.2. Перевірка цілісності файлів
- •Передавання інформації через захищені мережі
- •19.1. Захист інформації, що передається відкритими каналами зв'язку
- •19.2. Віртуальні захищені мережі
- •19.2.1. Різні види віртуальних захищених мереж
- •Vpn віддаленого доступу
- •19.2.2. Проблеми побудови віртуальних захищених мереж
- •19.3. Рівні реалізації віртуальних захищених мереж
- •19.3.1. Захист віртуальних каналів на сеансовому рівні
- •19.3.2. Захист віртуальних каналів на мережному рівні
- •19.3.3. Захист віртуальних каналів на канальному рівні
- •19.4. Вимоги нормативної бази до реалізації віртуальних захищених мереж в Україні
- •20.1. Порядок проведення робіт зі створення комплексної системи захисту інформації
- •20.1.1. Структура комплексної системи захисту інформації
- •20.1.2. Створення комплексної системи захисту інформації
- •Обґрунтування потреби у створенні системи захисту
- •20.2.2. Обстеження середовищ функціонування
- •20.2.3. Визначення й аналіз можливих загроз безпеці
- •20.2.4. Розроблення політики безпеки
- •20.2.5. Перелік вимог до захищеної системи
- •20.3. Розроблення технічного завдання на створення комплексної системи захисту інформації
- •20.4. Створення і впровадження комплексної системи захисту інформації
- •20.4.1. Розроблення проекту Порядок розроблення проекту
- •20.4.2. Введення комплексної системи захисту інформації в дію та оцінювання захищеності інформації в інформаційно-телекомунікаційних системах
- •20.4.3. Супроводження комплексної системи захисту інформації
- •21.1. Вимоги до кваліфікаційного аналізу
- •21.2. Організація державної експертизи
- •21.2.1. Положення про державну експертизу
- •21.2.2. Рекомендації з оформлення програм і методик проведення експертизи комплексної системи захисту інформації
- •21.3. Сертифікація засобів технічного захисту інформації
- •22.1. «Типове положення про службу захисту інформації в автоматизованій системі»
- •22.1.1. Загальні положення
- •22.1.2. Завдання та функції служби захисту інформації
- •22.1.3. Права й обов'язки служби захисту інформації
- •22.1.4. Взаємодія служби захисту інформації з іншими підрозділами та із зовнішніми організаціями
- •22.1.5. Штатний розклад і структура служби захисту інформації
- •22.1.6. Організація заходів служби захисту інформації та їх фінансування
- •22.2. Рекомендації щодо структури
- •22.2.1. Завдання захисту інформації в ас
- •22.2.2. Класифікація інформації, що обробляють в ас
- •22.2.3. Компоненти ас і технології оброблення інформації
- •22.2.4. Загрози інформації в ас
- •22.2.5. Політика безпеки інформації в ас
- •22.2.6. Календарний план робіт із захисту інформації в ас
- •22.3. Iso/iec 27002 «Інформаційні технології — Методики безпеки — Практичні правила управління безпекою інформації»
- •22.3.1. Загальні відомості про стандарт
- •22.3.2. Структура й основний зміст стандарту
- •22.3.3. Інші стандарти серн 27000
- •Грайворонський Микола Владленович Новіков Олексій Миколайович безпека інформаційно-комунікаційних систем
- •21100, М. Вінниця, вул. 600-річчя, 19.
5.4. Помилки переповнення буфера
Помилки переповнення буфера (Buffer Overflows) — найпоширеніші з помилок, іцо призводять до появи вад захисту в програмних системах. Скориставшись ци ми вадами захисту, зловмисники можуть виконати будь-яку команду і отримати можливість контролювати всю систему.
Спочатку розглянемо основну ідею переповнення буфера. У будь-якому програмному коді програмісти організовують буфери для тимчасового зберігання й оброблення даних. Розмір буфера має бути таким, щоб дані, з одного боку, повністю у ньому вміщались, а з іншого, щоб буфер не був надто великим, оскільки тоді він марно займатиме пам'ять. Для копіювання даних у буфер переважно використовують бібліотечні функції. Якщо робота ведеться з рядками символів, то деякі функції не зважають на попереднє обмеження довжини і здійснюють копіювання до кінця рядка, тобто до символу, що є ознакою кінця рядка. До таких функцій належать, наприклад, strcat(), strcpy(), sprintf(), vsprintf(), gets(), scanf(). Коли довжина рядка перевищує розмір буфера, копіювання триває, і частину рядка, що не вмістилась у буфері, буде записано замість даних, розташованих за його межами.
Зазначене повною мірою стосується мови програмування С, в якій ознакою кінця рядка є байт із нульовим значенням. У мові С така сама ситуація виникає під час роботи з масивами, оскільки автоматичну перевірку виходу за межі масиву не передбачено. Інші мови програмування можуть повністю або частково запобігати виникненню таких помилок.
Конкретні наслідки переповнення буфера залежать від того, яке значення мали втрачені або модифіковані дані та в якій області пам'яті було розміщено буфер: у статичній, динамічній пам'яті чи у стеку.
Розглянемо, які можливості надає порушникам переповнення буфера (зауважимо, що порушник, який розробляє атаку через переповнення буфера, належить до категорії хакерів).
5.4.1. Переповнення буфера у стеку
Переповнення буфера у стеку, або «зривання стека», є найвідомішою технологією використання переповнення буфера, яка, незважаючи на складність її реалізації, становить цілком реальну загрозу. Саме помилку переповнення буфера у стеку, що
існувала в демоні fingerd, успішно використовував мережний хробак, відомий як вірус Морріса (докладніше про нього йтиметься в розділі 6). Якщо у програмі виявляють помилку переповнення буфера у стеку, її оголошують як критичну.
Локальні змінні, оголошені у процедурі (функції), компілятор, як правило, розміщує у стеку. Тому розміщення у стеку буфера — явище типове. Розглянемо структуру стека. Як відомо, на багатьох апаратних платформах, зокрема на персональних комп'ютерах, стек зростає «зверху вниз», тобто в бік молодших (менших) адрес пам'яті. Після занесення даних у стек, його покажчик автоматично (апаратно) зміщується в бік молодших адрес, а в разі видалення даних зі стеку — в бік старших. Якщо у функції оголошено кілька локальних змінних, вони розміщуються (або для них резервується місце) у стеку послідовно і неперервно. Порядок розміщення залежить від компілятора, тобто першою у стек може потрапити або перша, або остання змінна. Якщо, наприклад, у функції є такий фрагмент [60]:
test_function () {
char а;
char buff[5];
char b;
}
то стан стека після виклику функції test_function() може бути таким, як на рис. 5.4. Різним може бути порядок розміщення змінних, тобто а і b можуть помінятися місцями.
Рис. 5.4. Стан стека після виклику функції test_function()
З наведеної схеми стають очевидними кілька важливих особливостей. По перше, оскільки стек зростає в бік молодших адрес, а змінні заповнюють пам'ять у напрямку зростання адрес, то переповнення буфера призведе до того, що будуть
змінені ті дані, які були занесені у стек раніше. У нашому випадку це змінна b, службова інформація, а далі — адреса повернення з функції, тобто адреса інструкції, що розташована за командою виклику функції. У багатьох архітектурах комп'ютерів адреса повернення розміщується саме у стеку. У таких архітектурах шляхом переповнення буфера у стеку можна не лише модифікувати значення
окремих змінних, але й передати керування у довільне місце.
Тепер розглянемо, за яких умов порушники матимуть можливість використати переповнення буфера. Атака може бути здійснена за таких умов:
локальні змінні розміщені у стеку;
стек зростає «вниз»;
існують програми, в яких є вразливий код на кшталт наведеної вище функції test_function( ).
Атака матиме сенс, якщо:
функція приймає рядок символів від користувача (з клавіатури, зі стандартного вводу, через мережу, від іншої програми);
функція виконується з більшими привілеями чи повноваженнями, ніж маг
користувач, від якого вона приймає дані.
За цих умов користувач-порушник має можливість змінити у стеку значення деякої змінної. Це може мати сенс, оскільки цілком імовірно, що така змінна матиме критичне для безпеки системи значення (наприклад, логічна змінна, яка визначає результат перевірки прав доступу).
Порушник може передати керування іншій функції за таких додаткових умов:
адресу повернення також розміщено у стеку;
дані у стеку можуть бути інтерпретовані як команди.
Порушника, що хоче лише передати керування певній системній функції, адреса якої в пам'яті йому відома, вдовольнить виконання першої умови. Виконання другої умови надає порушнику унікальну можливість — вставити програмний
код, який потрібно виконати, безпосередньо в рядок, що порушник передає у буфер, і на нього ж передати керування через адресу повернення. Хоча апаратні засоби, зокрема процесори Intel х86 (про них ітиметься в розділі 10), розрізняють сегменти коду і стека та підтримують заборону виконання інструкцій, розміщених у стеку, моделі пам'яті поширених ОС ці заборони скасовують за допомогою повного перекриття сегментів. Підсумовуючи всі викладені вище умови здійснення атак, можна дійти висновку, що більшість поширених ОС, зокрема UNIX і Windows, надають порушникам чимало можливостей щодо «зривання стека».
Ще раз переглянемо принципову схему атаки. Перед початком атаки в систем і функціонує певна вразлива програма, що виконується з високими привілеями. Вона приймає дані (наприклад, текстовий рядок) від непривілейованих користувачів (або від будь-кого з мережі). Порушник передає програмі спеціально підготовлений текстовий рядок. У результаті модифікуються важливі дані, до яких порушник із його повноваженнями доступу не мав, або виконується певний програмний код порушника з повноваженнями вразливої програми. Певний інтерес для порушників становлять програми зі встановленим атрибутом SUІD і майже
всі демони в UNIX, сервіси (служби) Windows, а також багато прикладних програм, які так чи інакше здійснюють виклик привілейованого коду. Детальніше технології переповнення буфера у стеку розглянуто в [15, 60].