Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Компьютерные сети.Лабораторная работа №1 Тарака...docx
Скачиваний:
26
Добавлен:
30.08.2019
Размер:
194.86 Кб
Скачать

Стек протоколов tcp/ip

Transmission Control Protocol/Internet Protocol (TCP/IP) - это промышленный стандарт стека протоколов, разработанный для глобальных сетей.

Стандарты TCP/IP опубликованы в серии документов, названных Request for Comment (RFC). Документы RFC описывают внутреннюю работу сети Internet. Некоторые RFC описывают сетевые сервисы или протоколы и их реализацию, в то время как другие обобщают условия применения. Стандарты TCP/IP всегда публикуются в виде документов RFC, но не все RFC определяют стандарты.

Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) более 20 лет назад для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является одним из основных в стеке TCP/IP и фигурирует в названии стека.

Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC.

Если в настоящее время стек TCP/IP распространен в основном в сетях с ОС UNIX, то реализация его в последних версиях сетевых операционных систем для персональных компьютеров (Windows NT 3.5, NetWare 4.1, Windows 95) является хорошей предпосылкой для быстрого роста числа установок стека TCP/IP.

Итак, лидирующая роль стека TCP/IP объясняется следующими его свойствами:

  • Это наиболее завершенный стандартный и в то же время популярный стек сетевых протоколов, имеющий многолетнюю историю.

  • Почти все большие сети передают основную часть своего трафика с помощью протокола TCP/IP.

  • Это метод получения доступа к сети Internet.

  • Этот стек служит основой для создания intranet- корпоративной сети, использующей транспортные услуги Internet и гипертекстовую технологию WWW, разработанную в Internet.

  • Все современные операционные системы поддерживают стек TCP/IP.

  • Это гибкая технология для соединения разнородных систем как на уровне транспортных подсистем, так и на уровне прикладных сервисов.

  • Это устойчивая масштабируемая межплатформенная среда для приложений клиент-сервер.

IP-адреса.IP-сети. Подсети и маски подсетей

IP-адрес (v4) состоит из 32-бит. Любой уважающий себя админ, да и вообще айтишник (про сетевых инженеров молчу) должен уметь, будучи разбуженным среди ночи или находясь в состоянии сильного алкогольного опьянения, правильно отвечать на вопрос «из скольки бит состоит IP-адрес». Желательно вообще-то и про IPv6 тоже: 128 бит.

Обстоятельство первое. Всего теоретически IPv4-адресов может быть: 2^32 = 2^10*2^10*2^10*2^2 = 1024*1024*1024*4 ≈ 1000*1000*1000*4 = 4 млрд. Ниже мы увидим, что довольно много из них «съедается» под всякую фигню.

PS. (2^10*2^10 - два в степени десять умножить на два в степени десять)

Записывают IPv4-адрес, думаю, все знают, как. Четыре октета (то же, что байта, но если вы хотите блеснуть, то говорите «октет» — сразу сойдете за своего) в десятичном представлении без начальных нулей, разделенные точками: «192.168.11.10». В заголовке IP-пакета есть поля source IP и destination IP: адреса источника (кто посылает) и назначения (кому). Как на почтовом конверте. Внутри пакетов у IP-адресов нет никаких масок. Разделителей между октетами тоже нет. Просто 32-бита на адрес назначения и еще 32 на адрес источника. Однако, когда IP-адрес присваивается интерфейсу (сетевому адаптеру или как там его еще называют) компьютера или маршрутизатора, то кроме самого адреса данного устройства ему назначают еще и маску подсети. Еще раз: маска не передается в заголовках IP-пакетов. Компьютерам маска подсети нужна для определения границ — ни за что не угадаете чего — подсети. Чтоб каждый мог определить, кто находится с ним в одной [под]сети, а кто — за ее пределами. (Вообще-то можно говорить просто «сети», часто этот термин используют именно в значении «IP-подсеть».) Дело в том, что внутри одной сети компьютеры обмениваются пакетами «напрямую», а когда нужно послать пакет в другую сеть — шлют их шлюзу по умолчанию (третий настраиваемый в сетевых свойствах параметр, если вы помните). Разберемся, как это происходит. Маска подсети — это тоже 32-бита. Но в отличии от IP-адреса, нули и единицы в ней не могут чередоваться. Всегда сначала идет сколько-то единиц, потом сколько-то нулей. Не может быть маски 120.22.123.12=01111000.00010110.01111011.00001100. Но может быть маска 255.255.248.0=11111111.11111111.11111000.00000000. Сначала N единиц, потом 32-N нулей. Несложно догадаться, что такая форма записи является избыточной. Вполне достаточно числа N, называемого длиной маски. Так и делают: пишут 192.168.11.10/21 вместо 192.168.11.10 255.255.248.0. Обе формы несут один и тот же смысл, но первая заметно удобнее. Чтобы определить границы подсети, компьютер делает побитовое умножение (логическое И) между IP-адресом и маской, получая на выходе адрес с обнуленными битами в позициях нулей маски. Рассмотрим пример 192.168.11.10/21:

11000000.10101000.00001011.00001011

11111111.11111111.11111000.00000000

----------------------------------------------

11000000.10101000.00001000.00000000 = 192.168.8.0

  • IP-сети

С точки зрения протокола IP, сеть (например, корпоративная или Интернет) рассматривается как иерархическая структура. На нижнем уровне иерархии расположено множество узлов (компьютеров или других устройств), представленных уникальными IP-адресами. Соотношение между физическими и логическими узлами можно описать следующим образом: одно и тоже физическое устройство (компьютер и др.) может иметь несколько IP-адресов, т.е. соответствовать нескольким логическим узлам. Обычно такая ситуация возникает, если устройство имеет несколько сетевых адаптеров и/или модемов, поскольку с каждым из них должен быть связан как минимум один уникальный IP-адрес. Хотя нередко компьютеру, имеющему один сетевой адаптер или модем, может быть присвоено несколько IP-адресов. Если физическое устройство имеет несколько IP-адресов, то говорят, что оно имеет несколько интерфейсов, т.е. несколько "точек подключения" к логической сети. Второй уровень образуется группировкой узлов (по совпадению номеров сетей в IP-адресах) в логические сети (IP-сети). Связь между логическими сетями осуществляют специальные устройства - шлюзы, отвечающие за целенаправленную передачу данных. Дополнительно шлюзы могут выполнять функции, связанные с обеспечением безопасности передаваемых данных, преобразование адресов, фильтрацию и т.п. Шлюзы, которые осуществляют только перенаправление данных из одной IP-сети в другую, называются маршрутизаторами, а процесс целенаправленной доставки данных между IP-сетями - маршрутизацией.

  • Подсети и маски подсетей.

Подсеть - это отдельная, самостоятельно функционирующая часть сети, имеющая соединение с общей сетью, как правило через маршрутизатор. Сеть класса A допускает наличие более 16 миллионов узлов. Представить себе такую сеть очень сложно, а работать в ней будет невозможно из-за того, что сетевое оборудование просто не справится с таким количеством передаваемых пакетов. В связи с этим IP-сеть можно разбить на несколько подсетей, объединив их маршрутизаторами и присвоив каждой из них свой идентификатор сети. В одном сетевом классе может существовать множество подсетей. Для настройки подсети используется маска подсети, которая предназначена для определения адреса сети независимо от класса сети. Формат записи маски подсети такой же как и формат IP-адреса, это четыре двоичных октета или четыре поля, разделяемых точкой. Значения полей маски задаются следующим образом:

  • все биты, установленные в 1, соответствуют идентификатору сети;

  • все биты, установленные в 0, соответствуют идентификатору узла.

 

Класс сети

Биты маски подсети

Маска подсети

A

11111111  00000000  00000000  00000000

255.0.0.0

B

11111111  11111111  00000000  00000000

255.255.0.0

C

11111111  11111111  11111111  00000000

255.255.255.0

Любой узел в сети требует наличия маски подсети. Маска не является IP-адресом узла, она лишь описывает адресное пространство подсети, с какого адреса начинается подсеть и каким заканчивается. Если в одной физической сети будут работать компьютеры с разной маской, то они не увидят друг друга. Использование в паре с IP-адресом маски подсети позволяют отказаться от применения классов адресов и сделать более гибкой всю систему IP-адресации. Так, например, маска 255.255.255.240 (11111111 11111111 11111111 11110000) позволяет разбить диапазон в 254 IP-адреса, относящихся к одной сети класса C, на 14 диапазонов, которые могут выделяться разным сетям. Таким образом, если IP-адрес компьютера 192.168.0.1 и маска подсети 255.255.255.0, то номер сети 192.168.0, а номер компьютера 1. Если локальная сеть состоит из пяти компьютеров, то IP-адреса компьютеров будут записаны следующим образом:

  • ip 192.168.0.1 маска 255.255.255.0

  • ip 192.168.0.2 маска 255.255.255.0

  • ip 192.168.0.3 маска 255.255.255.0

  • ip 192.168.0.4 маска 255.255.255.0

  • ip 192.168.0.5 маска 255.255.255.0

Поскольку биты идентификатора сети начинаются со старших разрядов IP-адреса, маску подсети можно выразить в более коротком виде, просто указав число битов идентификатора сети. Такой вид записи маски называется префиксом сети.

Класс сети

Биты маски подсети

Префикс сети

Маска подсети

A

11111111  00000000  00000000  00000000

/8

255.0.0.0

B

11111111  11111111  00000000  00000000

/16

255.255.0.0

C

11111111  11111111  11111111  00000000

/24

255.255.255.0

Например, запись 192.168.0.1 /24 соответствует записи 192.168.0.1 маска 255.255.255.0. Представление маски подсети в виде префикса сети называется методом CIDR (Classless Interdomain Routing).

  • Статический или динамический IP.

Итак статический IP прописывается в настройки сетевого адаптера динамический - назначается адаптеру посредством протоколов динамического конфигурирования. например DHCP.

Что такое фиксированный IP-адрес и зачем он нужен?

IP-адрес – это уникальный номер, используемый для идентификации компьютера в сети Интернет. Номер состоит из четырех чисел от 0 до 255, отделенных точками.

Когда Вы со своего компьютера выходите в Интернет, Ваш компьютер должен обладать таким уникальнам идентификатором. Он служит для идентификации компьютера в сети Интернет, для того, чтобы знать на какой компьютер передавать запрошенную Вами информацию. Это позволяет различным программам, функционирующим в сети, работать друг с другом, обеспечивая единое информационное пространство.

IP-адреса подразделяются на динамические и статические. Динамический IP-адрес назначается всегда, когда Вы выходите в Интернет при помощи услуги «Мобильный Интернет» на базе пакетной передачи данных (GPRS или EDGE). Этот адрес всегда новый и уникален только на момент вашего сеанса (соответственно, если Вы выйдете из сети Интернет и войдете вновь, то Вашему компьютеру будет присвоен уже новый IP-адрес).

При подключении услуги «Статический IP-адрес» конкретный IP-адрес закрепляется за Вами и остается неизменным до отключения услуги, вне зависимости от частоты и продолжительности пользования Интернетом. Наличие статического IP-адреса позволит Вам получать удаленный доступ к закрытым ресурсам сети, организовывать собственные WEB-сервера, играть в многопользовательские игры. Также Ваше мобильное устройство становится доступным для входящих сессий. Благодаря этому появится возможность организовывать любые сервера и использовать любые приложения, где требуется установление входящей сессии.[color=blue]

  • Служба DHCP

В операционной системе Microsoft Windows 2000 Server поддерживается широко известный протокол DHCP (Dynamic Host Configuration Protocol, протокол динамической конфигурации хоста). Это — открытый промышленный стандарт, который упрощает управление сетями на базе TCP/IP. Каждому хосту (компьютеру), подключенному к сети на базе TCP/IP, должен быть назначен уникальный IP-адрес. Протокол DHCP освобождает сетевых администраторов от необходимости настраивать все компьютеры вручную.

DHCP может автоматически конфигурировать настройки TCP/IP во время загрузки компьютера. Это позволяет хранить все доступные IP-адреса в центральной базе данных вместе с соответствующей информацией о конфигурации, такой как маска подсети, адрес шлюза и адреса серберов DNS и

WINS. DHCP упрощает работу системных администраторов. При этом чем больше сеть, тем выгоднее применять протокол DHCP. Без динамического назначения адресов администратору пришлось бы настраивать клиентов вручную, последовательно назначая адреса. Изменения должны производиться для каждого клиента по отдельности. Чтобы избежать двойного использования, IP-адреса должны распределяться централизованно. Информация о конфигурации без протокола DHCP распределена по клиентам; в этом случае трудно получить представление о конфигурациях всех клиентов.