Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-razdel.doc
Скачиваний:
13
Добавлен:
30.08.2019
Размер:
519.68 Кб
Скачать

§ 3. Элементы теории деформаций

Характерной чертой движения сплошной среды является ее дефор­мация, т. е. изменение расстояния между отдельными точками среды.

Можно доказать, что удлинение (или укорочение) произвольно направленного единичного отрезка , проходящего через какую-либо точку М(х1, х2, х3) среды, вычисляется по формуле

(1.16)

где αi= — направляющие косинусы отрезка; εii — удлине­ния (укорочения) единичных отрезков, направленных параллельно координатным осям oxi; εij = εji(ij) — изменения первоначально прямых углов, образованных отрезками, направленными парал­лельно координатным осям oxi и охj.

Таким образом, деформация элементарного объема среды в окрестности точки М полностью определяется шестью величинами εij, которые называются компонентами симметричного тензора деформаций.

Для малых (по сравнению с единицей) деформаций верны следующие соотношения Коши:

в декартовой системе координат

(i,j=1, 2, 3), (1.17)

где ui — компоненты вектора перемещения в точке М.

В цилиндрической системе координат (r, Θ, z) при осевой симметрии

(1.18)

Компоненты вектора перемещений ur, uΘ, uz связаны с компонентами ui(i = 1, 2, 3) обычными соотношениями преобразования координат при повороте системы вокруг оси oz:

ur= u1cos Θ + u2sin Θ,

uΘ= - u1 sin Θ + u2cos Θ,

uz= u3.

Если иметь в виду связь между координатами x1= r cos Θ, x2 = r sin Θ и x3 = z, то доказать справедливость перехода от формул (1.17) к формулам (1.18), или наоборот, не представляет труда.

Так как деформация отрезка не зависит от выбора направлений координатных осей, то правая часть в формуле (1.16) инвариантна преобразованию системы координат, т. е.

(1.19)

где и — направляющие косинусы и компоненты деформаций в новой системе координат. Для вычисления через εij, достаточно в равенстве (1.19) выразить через αi и сравнить коэффициенты при одинаковых αi, αj.

В любой точке тела всегда существует по крайней мере одна тройка взаимно перпендикулярных направлений, таких, что дефор­мация элемента в окрестности точки определяется только удлине­нием (укорочением) εij = εi вдоль этих направлений без изменения прямых углов (εij = 0, ij). Такие направления называются главными осями деформаций, а величины εi (i = 1, 2, 3) — главными удлинениями, которые могут быть найдены из следующего кубического уравнения:

где — символ Кронекера. Ясно, что коэффициенты этого уравнения не зависят от выбора системы координат, т. е. они инвариантны. Первый коэффициент ε этого уравнения

(1.20)

и имеет простой геометрический смысл — относительное измене­ние объема в окрестности точки. Коэффициенты а и b геометри­ческого смысла не имеют и поэтому не являются характеристикой деформаций.

Характеристикой искажения формы элемента сплошной среды служит инвариантная величина

Г

называемая интенсивностью деформаций сдвига. Величины γ1= ε2 - ε3, γ2= ε3 – ε1, γ3= ε1 – ε2 называются главными сдвигами.

Известно приближенное соотношение

Г = 1,08 γmах,

где γmах — наибольший из главных сдвигов.

В произвольной декартовой системе координат величина Г вычисляется по формуле

Г (1.21)

Иногда пользуются величиной εu = Г, называемой приведенной деформацией или интенсивностью деформаций.

Для характеристики деформационного состояния служит пара­метр Надаи

(1.22)

который изменяется в пределах от -1 (при чистом удлинении) до +1 (при частичном укорочении). В случае чистого сдвига με = 0. При всестороннем расширении (или сжатии) με смысла не имеет.

Часто удобно пользоваться следующим представлением ком­понент деформаций:

, (1.23)

где eij—компоненты, характеризующие только деформации сдви­га, называемые компонентами девиатора деформаций, δij—символ Кронекера. Отсюда следует, что компоненты тензора деформации растяжения (сжатия) εii отличаются от соответствующих компо­нент девиатора еii на 1/3 объемной деформации, а компоненты деформации сдвига не отличаются, т. е.

Если известны компоненты деформации εij как функции декартовых координат хi, то для однозначного определения 3-х компонент ui вектора перемещений из 6-ти соотношений (1.17) необходимо и достаточно, чтобы функции εij удовлетворяли условиям совместимости (или неразрывности) деформаций Сен-Венана:

(1.24)

и т. д., всего 6 условий (остальные получаются из выписанных круговой заменой индексов 1→2→3→1).

Таким образом, условия совместимости (1.24) являются урав­нениями, которые связывают компоненты εij тензора деформаций.

Для анализа больших деформаций, если главные оси при деформации не поворачиваются, используются так называемые натуральные удлинения (укорочения)

где li0, li —начальные и текущие длины элемента в соответствую­щих направлениях.

Характерные соотношения для малых деформаций являются справедливыми и для натуральных удлинений.

НР-10-1

Если скорость частиц сплошной среды = (v t, v2, v3), то за бесконечно малый промежуток времени dt среда испытывает бесконечно малую деформацию, определяемую перемещениями ui = vidt(i = 1, 2, 3). Компоненты этих деформаций, вычисленные по формулам (1.17), имеют общий множитель dt, разделив на который, получим

(1.25)

где ξij —компоненты тензора скоростей деформаций. Величины ξii определяют скорости удлинения (укорочения) единичных отрезков в направлениях охi, ξij(ij)— угловые скорости изменения перво­начально прямых углов, составленных единичными отрезками вдоль координатных осей.

Подобно формуле (1.16) скорость удлинения (укорочения) любого единичного отрезка вычисляется по формуле

Аналогично соотношениям (1.20) — (1.22) инвариантами скорос­ти деформации являются:

а) скорость относительного объемного расширения (сжатия)

(1.26)

б) интенсивность скоростей деформации сдвига относительно главных осей

(1.27)

где , , — главные скорости сдвигов (относительно произвольной системы координат Н выражается формулой (1.21));

в) параметр Надаи .

Компоненты скорости деформации ξij, как и компоненты деформации εij, не могут быть произвольными. Они должны удовлетворять условиям совместимости, аналогичным условиям (1.24).

Подобно представлению (1.23) для компонент тензора {ξij} скоростей деформаций верно соотношение

(1.28)

где λij — компоненты, характеризующие только скорости деформа­ции сдвига, называемые компонентами девиатора скорости дефор­маций.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]