Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Цаги.docx
Скачиваний:
5
Добавлен:
30.08.2019
Размер:
333.87 Кб
Скачать

История

Основатель ЦАГИ — профессор Императорского технического училища и Московского государственного университета Николай Егорович Жуковский — обладал очень глубокими познаниями в высшей математике и инженерных науках. Неудивительно, что вокруг этого человека сплотился коллектив студентов, одержимых идеей практического воздухоплавания. Его теоретические работы в области авиации, практический опыт создания аэродинамических труб в МГУ, ИМТУ и Кучино и проводившиеся в этих лабораториях исследования послужили фундаментом для развития авиационной науки в России.

В 1918 г. студенты и ученики Н.Е. Жуковского сумели убедить своего учителя обратиться к новым властям с предложением о создании в Советской России комплексного научного центра. Инициатива профессора Жуковского была поддержана руководителем Научно-технического отдела Высшего совета народного хозяйства Н.П. Горбуновым, и 1 декабря 1918 г. Центральный аэрогидродинамический институт (сокращенно — ЦАГИ) начал работу. После смерти Н.Е. Жуковского в 1921 г. ЦАГИ возглавил его соратник — С. А. Чаплыгин, видный ученый в области механики, внесший важнейший вклад в формирование научного облика института.

В последующие десятилетия структура ЦАГИ неоднократно менялась, оптимально приспосабливаясь к спектру решаемых задач и потребностям народного хозяйства, но в неприкосновенности оставалось одно — высочайшая научная школа и дух коллегиальности. Экспериментальная база института позволила в довоенный период проводить исследования по аэродинамике, гидродинамике, динамике полета и прочности летательных аппаратов. В ЦАГИ под руководством А.Н. Туполева в период 1924—1936 гг. были созданы такие этапные для отечественной авиации самолеты, как ТБ-1, ТБ-3 и другие.

Интенсивная работа института, направленная в предвоенные годы, в первую очередь, на прогресс самолетостроения, проходила в тесном сотрудничестве с ОКБ и заводами. Еще в 1925 г. были завершены работы по формированию «Норм прочности самолетов» — важнейшего для развития авиации документа, который впоследствии постоянно совершенствовался по мере эволюции авиационной техники.

Для помощи конструкторам в ЦАГИ в 1937 г. был выпущен первый том «Справочника для конструкторов», в котором были систематизированы требования по аэродинамике самолета. «Гидромеханика гидросамолета» и «Прочность самолета» были изданы II и III томами в 1938—1939 гг. В условиях военного времени в 1943 г. ЦАГИ выпустил фундаментальное издание — «Руководство для конструкторов». Так результаты фундаментальных исследований внедрялись в повседневную работу конструкторов и проектантов, закладывая прочную основу научного подхода к самолетостроению.

Появление в середине 1930-х гг. высокоскоростных самолетов-монопланов потребовало расширения экспериментальной базы института. Площадку для строительства нового комплекса экспериментальных установок выбрали в пойме Москвы-реки неподалеку от дачной платформы Отдых. Первый камень в основание нового ЦАГИ был заложен в 1935 г., а уже через четыре года в строй вступил блок больших труб Т-101 и Т-104. Совершенно новой установкой стала аэродинамическая труба переменного давления Т-106, позволявшая получать большие околозвуковые скорости.

Для сотрудников был построен жилой поселок, получивший в духе времени название Стаханов. Вскоре поселок стал городом центрального административного подчинения, который нарекли Жуковским, в честь основателя ЦАГИ. В 30—40-е гг. от ЦАГИ отделились ЦИАМ (1930 г.), ВИАМ (1932 г.), ЛИИ (1941 г.), ОКБ  А.Н. Туполева (1936 г.), СибНИА (1946 г.) и ряд других, впоследствии всемирно известных организаций.

В годы Великой Отечественной войны ЦАГИ проводил инновационные исследования, направленные на повышение тактико-технических характеристик советских боевых самолетов, а также осуществлял модернизацию и совершенствование существующего авиационного парка. Естественно, особое внимание уделялось, в первую очередь, практическим запросам в соответствии с единственно правильным в то время лозунгом «Все для фронта, все для победы!» Но не останавливались и фундаментальные исследования, благодаря которым в первые послевоенные годы отечественная авиация совершила революционный скачок в область сверхзвуковых скоростей.

Чтобы не двигаться по этому пути вслепую, потребовалось создать арсенал новых аэродинамических труб и специальных стендов. Внедрению результатов исследований ученых ЦАГИ должны быть благодарны те десятки стран, куда экспортировались советские истребители МиГ-15, МиГ-17, МиГ-21, Су-7Б и др., а также зенитные ракетные комплексы. В конечном счете, тесный союз конструкторов ОКБ и ученых ЦАГИ обеспечил победы в небе Кореи, Северного Вьетнама, а позднее — Ближнего Востока. Аэродинамики и прочнисты ЦАГИ сказали решающее слово при создании всех самолетов — носителей стратегического ядерного оружия: от Ту-16 до Ту-160.

Становление ракетной техники в СССР также не прошло без участия ЦАГИ. Более того, очередное расширение экспериментальной базы института, прошедшее на рубеже 1950—1960-х гг., было направлено как раз на создание новых установок, обеспечивающих гиперзвуковые скорости потока и моделирующих такие сложнейшие процессы, как аэродинамический нагрев при входе летательного аппарата в атмосферу, распространение ударных волн и многое другое. Была построена целая серия газодинамических установок и аэродинамических труб, рассчитанных на достижение скоростей обтекания в диапазоне чисел М=8—20; лаборатории теплопрочностных испытаний и испытаний на выносливость; усовершенствовалась энергетическая база института.

Этапными для института стали исследования аэродинамики и динамики полета самолетов с крылом изменяемой геометрии. Успешно решив проблемы устойчивости и управляемости, прочности и аэроупругости и доказав преимущества подобной компоновки, ЦАГИ дал путевку в жизнь таким многорежимным самолетам, как МиГ-23,Су-24 и Ту-160.

Проведение исследований по этим и другим машинам стимулировало развитие вычислительной базы института и формирование направления численных методов расчетов в газодинамике и прочности.

В конце 1960-х гг. развернулись работы по созданию фронтовых истребителей нового поколения с высокой тяговооруженностью и маневренностью. Исследования вопросов нестационарной аэродинамики, новых компоновок с несущим фюзеляжем и управления вихревой структурой крыла воплотились в самолетах МиГ-29 и Су-27, продемонстрировавших непревзойденные маневренные качества и боевой потенциал.

Важный вклад внесли специалисты ЦАГИ в создание пассажирских и транспортных самолетов нового поколения Ил-96, Ту-204 и Ан-124. Применение сверхкритических профилей позволило улучшить аэродинамические характеристики крыла и, как следствие, повысить экономичность этих самолетов. Решение проблемы флаттера самолетов Ил-96 и Ту-204, напрямую связанное с безопасностью полетов, было найдено в результате совместных исследований ЦАГИ, ЛИИ и ОКБ.

Самой крупномасштабной работой двух последних десятилетий, проведенной с привлечением всех подразделений института, стало создание воздушно-космического самолета «Буран». Достаточно сказать, что для исследования его теплозащиты была построена натурная тепло-прочностнаявакуумная камера ТПВК диаметром 14 м и длиной 30 м! Были решены проблемы акустической прочности, построения алгоритмов автоматической системы управления и многое другое. Блестящий летный дебют «Бурана» состоялся за полмесяца до семидесятилетия ЦАГИ.

В 1994 г. указом президента Российской Федерации ЦАГИ получил статус Государственного научного центра. Символично, что документ о регистрации имеет № 1!

В настоящее время в ЦАГИ работают 4500 сотрудников, среди которых 695 научных работников, в том числе один академик РАН, тричлена-корреспондента РАН, 103 доктора наук и 463 кандидата наук.

Научные заслуги коллектива ЦАГИ несомненны, и давно уже имена многих его сотрудников вписаны золотыми буквами в историю мировой авиации. Не менее важным достижением является создание системы научных исследований, позволяющей избегать дублирования и распыления средств. При этом не остается без внимания ни один аспект создания летательных аппаратов. Разумное сочетание объектовых работ с фундаментальными исследованиями сформировало тот задел, благодаря которому и сегодня, в условиях многолетнего кризиса оборонной промышленности, российская авиационная техника вопреки всему сохраняет по ряду направлений ведущие позиции в мире.За большой вклад в развитие авиационно-космической науки и техники ЦАГИ награжден орденами Трудового Красного Знамени (1926 г.), Красного Знамени (1933 г.), орденом Ленина (1945 г.), Почетной грамотой Президиума Верховного Совета РСФСР (1968 г.), орденом Октябрьской Революции (1971 г.). В 1998 г. ЦАГИ объявлена благодарность президента Российской Федерации.

 Решение об образовании национального русского центра авиации было принято с одобрения В. И. Ленина. Н. Е. Жуковский и А. Н. Туполев посетили Высший совет народного хозяйства и получили не только согласие на организацию института, но и финансовую помощь. Аэродинамическая лаборатория в МВТУ была вначале основной базой экспериментальных работ  ЦАГИ , который в настоящее время является Российским центром авиационной науки и техники. Придавая большое значение развитию авиации, Советское правительство в 1919 г. приняло решение о создании в Москве учебного заведения для подготовки инженерно-технических кадров. В сентябре того же года состоялось первое заседание совета авиационного техникума под председательством Н. Е. Жуковского, а в сентябре 1920 г. техникум был реорганизован в Институт инженеров Красного Воздушного Флота им. Н. Е. Жуковского. Позднее на его базе создается Военно-воздушная академия, носящая в настоящее время имя Н. Е. Жуковского. Деятельность великого русского ученого, посвятившего свою жизнь исследованию вопросов теории авиации, была высоко оценена Советским правительством. Специальным постановлением Совета Народных Комиссаров от 3 декабря 1920 г., в котором Н. Е. Жуковский именовался «отцом русской авиации», он был освобожден от обязательного чтения лекций и получил право «объявлять курсы более важного научного содержания». Ученому устанавливался месячный оклад. Тем же постановлением учреждалась ежегодная премия Н. Е. Жуковского за выдающиеся труды в области математики и механики. Было также принято решение об издании трудов ученого. В предисловии к переизданным в 1972 г. лекциям профессора Н. Е. Жуковского «Динамика аэропланов в элементарном изложении», которые он читал слушателям теоретических курсов авиации, А. Н. Туполев писал о великом вкладе Н. Е. Жуковского в создание нашей советской авиации, о том, что Николай Егорович Жуковский верил в новые силы страны и хотел идти вместе с этими силами. Он всегда оставался настоящим патриотом, глубоко любил свою Родину, радовался ее успехам, переживал неудачи и всегда хотел быть ей полезен. Жуковский был прекрасным учителем. Он учил просто, ясно, всегда чрезвычайно доброжелательно, и то, что хотел передать ученикам, западало им в душу не только как знание, но и как любовь к тому, что любил он сам. А любил он науку, авиацию и очень любил эксперимент, считая его совершенно необходимым. Н. Е. Жуковский был не только великим ученым, но и инженером «высшего ранга», поэтому его ученики не замыкались только з пауке, а стремились к созданию оригинальных конструкций планеров, вертолетов, глиссеров, самолетов на основании научной теории и результатов эксперимента. Поэтому основанные на школе Николая Егоровича Жуковского авиационные институты — это не просто учебные заведения, а еще и научные организации, работающие над созданием советского воздушного флота. А. Н. Туполев хотел, чтобы, получая памятный курс лекций, прочитанных Жуковским в 1913 г. и изданных в год Великой Октябрьской социалистической революции, каждый почувствовал то уважение и тепло к Николаю Егоровичу Жуковскому, которое сохранили к нему его ученики. Эти воспоминания А. Н. Туполева являются прекрасной характеристикой научных и личных качеств великого русского ученого. Можно напомнить основные этапы развития научно-исследовательских работ в области аэродинамики самолетов отечественной авиации. В первые послереволюционные годы бурное развитие аэродинамики как в теоретическом, так и в прикладном смысле, и в первую очередь в изучении пограничного слоя, получило свое практическое применение. Были заложены основы норм устойчивости и управляемости, изучены флаттер и бафтинг в применении к конкретным типам летательных аппаратов, разработаны серии новых скоростных и несущих профилей крыла с механизацией. Разработанные основы дозвуковой и трансзвуковой аэродинамики с введением в эксплуатацию новых аэродинамических труб позволили совершить скачок в летных данных самолетов. Этому способствовали и увеличение мощности двигателей, разработка воздушных винтов изменяемого шага, создание новых конструкционных материалов на основе алюминия и новых технологических процессов для обработки. Как и во всякой науке, ведущая роль в решении задач в области аэродинамики принадлежала фундаментальным теоретическим исследованиям, на базе которых строились расчетные инженерные методы, составляющие основу прикладной теории. Корифеи советской аэродинамики, такие, как Н. Е. Жуковский, С. А. Чаплыгин, Б. Н. Юрьев, В. В. Голубев, М. В. Келдыш, С. А. Христианович, Г. П. Свищев, В. В. Струминский и многие другие, находились во главе прогресса авиации. Трудность прикладного использования теоретических исследований состояла в том, что теоретические решения могли быть найдены только для отдельных форм профилей, крыльев, тел вращения. Это означало, что почти для всех практически используемых в авиации форм из-за отсутствия в то время ЭВМ, позволяющих использовать численные методы, большая часть теоретиков была занята конкретными расчетами. Правильность базовой теории и приближенных методов решения требовали экспериментальной проверки — подтверждения, а если необходимо, то и экспериментальных поправок, что имело и имеет место и до настоящего времени. Для таких проверок была построена экспериментальная труба  ЦАГИ  диаметром 3 м и затем вторая — диаметром 6 м. В создании экспериментальной базы  ЦАГИ  особенно велика роль А. Н. Туполева. Здесь, по мнению Г. П. Свищева, с полной силой проявился талант Андрея Николаевича как организатора крупного масштаба. Создание аэродинамических труб с такими размерами и высокими скоростями потока сделало возможным испытание крупных по размерам моделей, позволяющих точно моделировать формы самолетов, отрабатывать их аэродинамические характеристики, а часто испытывать и натурные элементы самолета, в том числе фюзеляж. В числе первых достижений аэродинамиков тех лет была обклейка полотном гофра поверхностей фюзеляжа на самолете АНТ-4, что дало большой эффект по улучшению летных данных. В порядок допуска в воздух самолета в первый раз вмешался предшественник АТК ВВС, определивший, что без соответствующего свидетельства  ЦАГИ  ни одна машина не может первый раз подняться в воздух. От  ЦАГИ  летательный аппарат получает свой воздушный паспорт, дающий право на первый взлет. Был создан справочник конструктора, в который были включены все разделы аэродинамики самолета: аэродинамика крыла и воздушных винтов, охлаждение моторов, аэродинамический расчет, устойчивость и управляемость, проверка на штопор, методика испытаний в аэродинамических трубах и методика летных испытаний. Дальнейшим развитием этого направления было создание руководства для конструкторов, где давались рекомендации по вопросам от выбора геометрических форм самолета до получения результатов испытаний модели в аэродинамической трубе, позволяющие учесть особенности и детали реальной конструкции самолета. Вторым направлением  развития  прикладной науки является накопление фактов. В аэродинамике, как и в любой науке, говорил А. М. Черемухин, факты для  развития  теории и прикладных методов расчета приносят познание явлений природы. Эти факты, как правильно сказано, узнаются из «неожиданных тел», возникающих при эксплуатации самолетов и их испытаниях, а также при изучении в аэродинамических трубах. На базе осмысления фактов идет разработка теории, а затем уже на базе теории и накопленных экспериментальных данных создаются прикладные расчетные методы. Летные испытания всегда являлись отличным источником информации, так как они проходят в натурных условиях и являются наиболее достоверными источниками для получения научно-практических данных. Именно поэтому уже в прошлом в отечественных конструкторских бюро создавались экспериментальные самолеты, начиная с самолета АНТ-4, о котором уже говорилось. Однако фундаментальные испытания оставались на стороне аэродинамических труб, которые строились в нашей стране, и их объемы и степень совершенства были уже таковыми, что в 1944 г. в трубе Т-101  ЦАГИ  испытывался самолет Ту-2, а в кабине самолета находился летчик-испытатель. С появлением турбореактивных двигателей появилась возможность преодоления «звукового барьера» и выхода самолета на сверхзвуковую скорость. Для исследований новых эффектов была построена трансзвуковая аэродинамическая труба, а затем введены в эксплуатацию аэродинамические трубы больших сверхзвуковых скоростей. Особое место в аэродинамике и самолетостроении занимает познание превратностей трансзвуковой скорости полета, стоившей жизни многим летчикам-испытателям и ставившей в трудное положение тех, кто строит самолеты и их принимает в эксплуатацию. Переход военной и гражданской авиации к сверхзвуковым скоростям полета и совершение длительных полетов потребовали решения многих задач. Для этого прежде всего было необходимо существенно повысить аэродинамическое качество самолета на этих скоростях и решить вопросы устойчивости и балансировки самолета во всем диапазоне скоростей — от дозвуковой до сверхзвуковой. Вопросы теплостойкости конструкционных материалов, смазки и герметиков стали одними из определяющих для конструкций, работающих в условиях циклического аэродинамического нагрева, характерного для высоких сверхзвуковых скоростей полета.

Создание и развитие центрального аэрогидродинамического института (ЦАГИ) им. проф. Н.Е. Жуковского в Москве 1918-1930 гг. :историко-технический аспект