
- •Глава 1. Теоретические основы прикладной оптики
- •1.1. Природа света. Волновой и квантовый характер световых явлений
- •1.2. Законы распространения света
- •1.3. Способы определения скорости света
- •1.4. Когерентность [7]
- •1.4.1. Степень когерентности светового пучка
- •1.4.2. Методы измерения пространственной и временной когерентности
- •1.5. Дисперсия света
- •1.6. Интерференция света
- •1.7. Интерференционные линии равной толщины и равного наклона
- •1.8. Интерферометры
- •1.8.1. Интерферометр Линника
- •1.8.2. Интерферометр Рэлея
- •1.8.3. Звездный интерферометр Майкельсона
- •1.8.7. Схема интерферометра Майкельсона
- •1.8.4. Интерферометр Фабри-Перо
- •1.8.5. Интерферометр Жамена
- •1.8.6. Интерферометр Рождественского
- •1.8.7. Использование интерференции света в промышленности
- •1.9. Дифракция света. Принцип Гюйгенса Френеля
- •1.10. Дифракция Фраунгофера
- •1.10.1. Дифракция от щели
- •1.10.2. Дифракционная решетка
- •1.10.3. Дифракционная решетка как спектральный прибор
- •1.11. Дифракция на круглом отверстии
- •1.11.1. Зоны Френеля
- •1.11.2. Зонная пластинка
- •1.11.3. Линза как дифракционный прибор
- •1.11.4. Пятно Пуассона
- •1.12. Поляризация света
- •1.12.1. Свет поляризованный и неполяризованный. Закон Малюса
- •1.12.2. Одноосные кристаллы
- •1.12.3. Скрещенные поляризаторы
- •1.12.4. Двойное лучепреломление
- •1.12.5. Поляризаторы
- •1.12.6. Анализ поляризованного света
- •1.12.7. Естественное вращение плоскости поляризации
- •1.12.8. Эффект Зеемана и поляризация
- •1.12.9. Искусственное двойное лучепреломление
- •1.12.10. Магнитное вращение плоскости поляризации
- •1.13. Оптически бесцветное стекло. Марки стекла
- •1.14. Требования к стеклу. Классы и категория стекла
- •1.15. Цветное оптическое стекло. Техническое стекло
- •1.16. Выполнение рабочих чертежей оптических деталей в соответствии с ескд
- •Глава 2. Основные оптические детали
- •2.1. Зеркала
- •2.2. Тонкие линзы
- •2.3. Плоскопараллельная пластинка
- •2.4. Оптический клин
- •2.5. Отражательные призмы
- •2.6. Развертка призм в плоскопараллельную пластинку
- •Для прямоугольной призмы с двумя отражениями
- •2.7. Редуцирование призм. Графоаналитический метод расчета призм
- •2.8. Компенсаторы
- •Глава 3. Основные свойства идеальной оптической системы
- •3.1. Идеальная оптическая система
- •3.2. Линейное и угловое увеличение оптической системы.
- •3.3. Правило знаков
- •3.4. Основные оптические формулы. Построение изображения
- •3.5. Инвариант Аббе
- •3.6. Расчет хода нулевого луча
- •3.7. Отдельная линза в воздухе
- •3.8. Расчет хода нулевого луча через сложную оптическую систему
- •3.9. Оптическая система из двух компонент
- •Положим и выберем произвольно, тогда из формул
- •3.10. Графический способ определения хода нулевого луча
- •3.11. Определение хода действительного луча
- •Глава IV. Общие свойства оптических систем
- •4.1. Основные характеристики оптического прибора
- •4.2. Видимое увеличение
- •4.3. Основные фотометрические понятия
- •4.4. Потери света
- •4.5. Диафрагмы и их значение
- •4.6. Виньетирование
- •4.7. Светосила
- •4.8. Освещенность по полю изображения
- •4.9. Поле зрения
- •4.10. Глубина изображаемого пространства
- •4.11. Глубина резкости
- •4.12. Аберрации оптических систем
- •4.12.1. Классификация аберраций
- •4.12.2. Хроматическая аберрация
- •4.12.3. Сферическая аберрация
- •4.12.4. Астигматизм и кривизна изображения
- •4.12.5. Кома
- •Величина, численно характеризующая кому, равна
- •4.12.6. Дисторсия
- •Глава 5. Теория оптических приборов
- •5.1. Зрачки и люки
- •5.2. Отрезки, определяющие положение зрачков
- •5.3. Передача перспективы оптическими приборами
- •5.4. Основные фотометрические величины
- •Мы имеем
- •5.5. Источники излучения
- •5.6. Приемники световой энергии
- •5.7. Светосила оптического прибора
- •5.8. Светосила оптического прибора с малой передней апертурой и малой задней апертурой
- •5.9. Потери света в оптическом приборе
- •Преобразуем эту формулу
- •5.10. Глаз человека
- •5.11. Видимое увеличение оптического прибора
- •5.12. Глубина резкости фотографического аппарата, лупы и микроскопа
- •5.13. Критерий разрешающей способности оптического прибора
- •5.14. Разрешающая способность зрительных труб и фотографических объективов
- •Глава 6. Теория микроскопа
- •6.1. Оптическая система микроскопа
- •Из формулы
- •6.2. Формулы геометрической теории микроскопа
- •Поэтому
- •6.3. Осветительная система микроскопа
- •6.4. Основы дифракционной теории микроскопа
- •6.5. Разрешающая способность микроскопа
- •Окуляр, в нашем случае, есть лупа, для которой мы имели формулу
- •6.6. Фазовый контраст
- •6.7. Производство современных микроскопов
- •6.7.1. Световые
- •Микроскопы серии dm lm
- •Глава 7. Теория телескопических систем
- •7.1. Телескопические системы
- •Для продольного увеличения была получена формула
- •7.2. Зрительная труба Галилея
- •7.3. Зрительная труба Кеплера
- •7.4. Окуляры и объективы зрительных труб
- •7.5. Зрительные трубы с призменными оборачивающими системами
- •7.6. Зрительные трубы с линзовыми оборачивающими системами
- •7.7. Телескопические системы со скачкообразной переменной увеличения
- •Глава 8. Методы компьютерной оптики
- •8.1. Задачи компьютерной оптики [1,2]
- •8.2. Цифровая голография [3-5]
- •8.2.1. Общая процедура изготовления синтезированной голограммы
- •8.2.2. Получение цифровой голограммы Фурье и ее бинаризация
- •8.2.3. Киноформ
- •8.3. Фазовая проблема в оптике. Cоздание на основе решения обратных задач нового класса оптических элементов [1, 2, 6-9]
- •8.3.1. Извлечение фазовой информации из данных об интенсивности
- •8.3.2. Особенности расчета характеристик фокусаторов и корректоров излучения
- •8.3.3. Дифракционные оптические элементы
- •8.3.4. Создание фокусаторов на основе управляемых зеркал
- •8.4. Фокусировка излучения при наличии случайных помех. Использование методов адаптивной оптики [7-9]
- •8.5. Оптические элементы для анализа и формирования поперечного состава излучения [1]
- •8.6. Цифровая обработка полей в оптических системах [10-13]
- •8.6.1. Виды обработки оптических полей
- •8.6.2. Автоматизированная измерительная система для диагностики структуры лазерных пучков
- •Глава 9. Запись и обработка оптической информации
- •9.1. Общая характеристика оптических систем [1-3]
- •9.2. Однолинзовая система [1-4]
- •9.2.1. Линзы как элементы, выполняющие преобразование Фурье
- •9.2.2. Формирование изображения [1]
- •9.3. Получение изображений в сложных системах [1, 8]
- •9.3.1. Дифракционно-ограниченные системы
- •9.4. Учет аберраций [5]
- •9.5. Голографическая запись информации [2, 6-9]
- •9.5.1. Принцип голографической записи
- •9.5.2. Голограммы Фурье
- •9.6. Оптическая фильтрация и распознавание образов [2,3]
- •9.6.1. Применение системы 4-f
- •9.6.2. Голографический метод синтезирования пространственных фильтров и проблема апостериорной обработки информации
- •9.7. Сопоставление методов когерентной и некогерентной оптики [2]
- •9.8. Характеристики качества изображения [10]
- •Оглавление
1.8.3. Звездный интерферометр Майкельсона
Если угловое расстояние между двумя звездами очень мало, в телескоп они видны как одна звезда. В таком случае говорят о двойных звездах и надо провести специальное наблюдение, чтобы отличить их от звезд одиночных. Для этого используется звездный интерферометр Майкельсона, который позволяет к тому же определить угловое расстояние между звездами.
Устройство звездного интерферометра Майкельсона показано не рис. 1.8.5. Лучи света, пришедшего от удаленной звезды, отражается от зеркал, разнесенных на достаточно большое расстояние D, затем от двух других зеркал и собираются линзой на экране, помещенном в фокальной плоскости. Разнесенные на расстояние D зеркала можно рассматривать как точечные источники, расстояние между которыми и равно D.
D
линза
x
0 X
Рис. 1.8.5
Воспользуемся полученным ранее выражением для углового распределения максимумов излучения света
;
Иначе говоря,
.
На
экране будут наблюдаться максимумы на
расстояниях
друг от друга.
Если
наблюдаются две близкие звезды, лучи
света от которых приходят под малым
углом ,
то на экране будут наблюдаться две
интерференционные картины, сдвинутые
по отношению друг к другу на расстояние
.
Измерение углового расстояния
между
звездами производится следующим образом.
При
изменении величины D
изменяется
.
Несложно догадаться, что при
видимость интерференционной картины
ухудшится или она вообще не будет
наблюдаться. Это позволяет определить
угловое расстояние между звездами:
;
.
На рис. 1.8.6 показано именно такое взаимоположение интерференционных картин, интенсивность излучения одной из звезд несколько больше.
0
E0
Рис. 1.8.6
При изменении расстояния между зеркалами изменяется величина .
Таким способом можно определить весьма малые угловые расстояния .
Схема интерферометра Майкельсона
У
прощенная
схема интерферометра Майкельсона
приведена на рис. 1.8.7.
1.8.7. Схема интерферометра Майкельсона
Свет от источника S падает на пластинку P1, задняя сторона которой покрыта тонким полупрозрачным слоем серебра или алюминия. Здесь пучок разделяется на два взаимно перпендикулярных пучка. Отраженный пластинкой P1, пучок падает на зеркало M1, отражается назад, вновь попадает на пластинку P1, где снова разделяется на две части. Одна из них идет к источнику S и не представляет интереса, а другая попадает в зрительную трубу, установленную на бесконечность, или на линзу L, в фокальной плоскости F которой расположен экран для наблюдения интерференции. Прошедший сквозь пластинку P1 пучок от источника падает на зеркало M2, возвращается к P1 и частично отражается в сторону линзы L. Таким образом, от одного источника S получаются два пучка примерно одинаковой интенсивности, которые распространяются после разделения пластинкой P1 в разных "плечах" интерферометра, затем снова встречаются и создают интерференционную картину в фокальной плоскости линзы L. Пластинка P2, такая же, как и P1, только без отражающего покрытия, ставится на пути второго пучка для компенсации разности хода, возникающей из-за того, что первый пучок проходит через P1 три раза, а второй - только один раз. Зеркало M2 неподвижно, а зеркало M1 можно передвигать микрометрическим винтом так, что его плоскость все время остается перпендикулярной зеркалу M2.
Построим изображение зеркала M2, создаваемое отражающей поверхностью разделительной пластинки (M2 на рис. 1.8.7). Оптическая длина пути от источника до точки наблюдения для луча, отразившегося от зеркала M2, будет такой же, как и для воображаемого луча, отразившегося от M2. Поэтому можно считать, что интерференционная картина, наблюдаемая в фокальной плоскости линзы L, возникает из-за воздушного слоя между оторажающей поверхностью M1 и мнимой отражающей поверхностью M2. При параллельных поверхностях M1 и M2 полосы имеют вид концентрических окружностей с центром в фокусе линзы.
Если после разделительной пластинки P1 пучки имеют одинаковую интенсивность, то распределение интенсивности в фокальной плоскости описывается формулой, где разность хода , как и в случае плоскопараллельного воздушного слоя, в соответствии с (5.10) равна = 2hcos. Разность хода при заданном расстоянии h между M1 и M2, т.е. при фиксированном положении подвижного зеркала, зависит только от угла наклона луча по отношению к оптической оси. Данному значению соответствует кольцо радиусом Ftg в фокальной плоскости линзы. Поэтому положение и размер светлых и темных колец не зависят от положения источника S, т.е. можно использовать протяженный источник. При этом получаются интерференционные полосы, локализованные в фокальной плоскости линзы L.
Центру интерференционной картины (=0) соответствует максимальная разность хода max=2h, равная удвоенному расстоянию между M1 и M2. Когда M1 приближается к M2, кольца стягиваются по направлению к центру. Перемещение зеркала на расстояние m0/2 вызывает смещение картины на m порядков. Визуально смещение можно оценить с точностью до 1/20 порядка, но существуют методы, позволяющие обнаружить смещения до 10-3 порядка. По мере приближения M1 к M2 угловой масштаб картины возрастает до тех пор, пока M1 не совпадет с M2. При этом освещенность экрана (или поля зрения при визуальном наблюдении) становится равномерной.