
- •Глава 1. Теоретические основы прикладной оптики
- •1.1. Природа света. Волновой и квантовый характер световых явлений
- •1.2. Законы распространения света
- •1.3. Способы определения скорости света
- •1.4. Когерентность [7]
- •1.4.1. Степень когерентности светового пучка
- •1.4.2. Методы измерения пространственной и временной когерентности
- •1.5. Дисперсия света
- •1.6. Интерференция света
- •1.7. Интерференционные линии равной толщины и равного наклона
- •1.8. Интерферометры
- •1.8.1. Интерферометр Линника
- •1.8.2. Интерферометр Рэлея
- •1.8.3. Звездный интерферометр Майкельсона
- •1.8.7. Схема интерферометра Майкельсона
- •1.8.4. Интерферометр Фабри-Перо
- •1.8.5. Интерферометр Жамена
- •1.8.6. Интерферометр Рождественского
- •1.8.7. Использование интерференции света в промышленности
- •1.9. Дифракция света. Принцип Гюйгенса Френеля
- •1.10. Дифракция Фраунгофера
- •1.10.1. Дифракция от щели
- •1.10.2. Дифракционная решетка
- •1.10.3. Дифракционная решетка как спектральный прибор
- •1.11. Дифракция на круглом отверстии
- •1.11.1. Зоны Френеля
- •1.11.2. Зонная пластинка
- •1.11.3. Линза как дифракционный прибор
- •1.11.4. Пятно Пуассона
- •1.12. Поляризация света
- •1.12.1. Свет поляризованный и неполяризованный. Закон Малюса
- •1.12.2. Одноосные кристаллы
- •1.12.3. Скрещенные поляризаторы
- •1.12.4. Двойное лучепреломление
- •1.12.5. Поляризаторы
- •1.12.6. Анализ поляризованного света
- •1.12.7. Естественное вращение плоскости поляризации
- •1.12.8. Эффект Зеемана и поляризация
- •1.12.9. Искусственное двойное лучепреломление
- •1.12.10. Магнитное вращение плоскости поляризации
- •1.13. Оптически бесцветное стекло. Марки стекла
- •1.14. Требования к стеклу. Классы и категория стекла
- •1.15. Цветное оптическое стекло. Техническое стекло
- •1.16. Выполнение рабочих чертежей оптических деталей в соответствии с ескд
- •Глава 2. Основные оптические детали
- •2.1. Зеркала
- •2.2. Тонкие линзы
- •2.3. Плоскопараллельная пластинка
- •2.4. Оптический клин
- •2.5. Отражательные призмы
- •2.6. Развертка призм в плоскопараллельную пластинку
- •Для прямоугольной призмы с двумя отражениями
- •2.7. Редуцирование призм. Графоаналитический метод расчета призм
- •2.8. Компенсаторы
- •Глава 3. Основные свойства идеальной оптической системы
- •3.1. Идеальная оптическая система
- •3.2. Линейное и угловое увеличение оптической системы.
- •3.3. Правило знаков
- •3.4. Основные оптические формулы. Построение изображения
- •3.5. Инвариант Аббе
- •3.6. Расчет хода нулевого луча
- •3.7. Отдельная линза в воздухе
- •3.8. Расчет хода нулевого луча через сложную оптическую систему
- •3.9. Оптическая система из двух компонент
- •Положим и выберем произвольно, тогда из формул
- •3.10. Графический способ определения хода нулевого луча
- •3.11. Определение хода действительного луча
- •Глава IV. Общие свойства оптических систем
- •4.1. Основные характеристики оптического прибора
- •4.2. Видимое увеличение
- •4.3. Основные фотометрические понятия
- •4.4. Потери света
- •4.5. Диафрагмы и их значение
- •4.6. Виньетирование
- •4.7. Светосила
- •4.8. Освещенность по полю изображения
- •4.9. Поле зрения
- •4.10. Глубина изображаемого пространства
- •4.11. Глубина резкости
- •4.12. Аберрации оптических систем
- •4.12.1. Классификация аберраций
- •4.12.2. Хроматическая аберрация
- •4.12.3. Сферическая аберрация
- •4.12.4. Астигматизм и кривизна изображения
- •4.12.5. Кома
- •Величина, численно характеризующая кому, равна
- •4.12.6. Дисторсия
- •Глава 5. Теория оптических приборов
- •5.1. Зрачки и люки
- •5.2. Отрезки, определяющие положение зрачков
- •5.3. Передача перспективы оптическими приборами
- •5.4. Основные фотометрические величины
- •Мы имеем
- •5.5. Источники излучения
- •5.6. Приемники световой энергии
- •5.7. Светосила оптического прибора
- •5.8. Светосила оптического прибора с малой передней апертурой и малой задней апертурой
- •5.9. Потери света в оптическом приборе
- •Преобразуем эту формулу
- •5.10. Глаз человека
- •5.11. Видимое увеличение оптического прибора
- •5.12. Глубина резкости фотографического аппарата, лупы и микроскопа
- •5.13. Критерий разрешающей способности оптического прибора
- •5.14. Разрешающая способность зрительных труб и фотографических объективов
- •Глава 6. Теория микроскопа
- •6.1. Оптическая система микроскопа
- •Из формулы
- •6.2. Формулы геометрической теории микроскопа
- •Поэтому
- •6.3. Осветительная система микроскопа
- •6.4. Основы дифракционной теории микроскопа
- •6.5. Разрешающая способность микроскопа
- •Окуляр, в нашем случае, есть лупа, для которой мы имели формулу
- •6.6. Фазовый контраст
- •6.7. Производство современных микроскопов
- •6.7.1. Световые
- •Микроскопы серии dm lm
- •Глава 7. Теория телескопических систем
- •7.1. Телескопические системы
- •Для продольного увеличения была получена формула
- •7.2. Зрительная труба Галилея
- •7.3. Зрительная труба Кеплера
- •7.4. Окуляры и объективы зрительных труб
- •7.5. Зрительные трубы с призменными оборачивающими системами
- •7.6. Зрительные трубы с линзовыми оборачивающими системами
- •7.7. Телескопические системы со скачкообразной переменной увеличения
- •Глава 8. Методы компьютерной оптики
- •8.1. Задачи компьютерной оптики [1,2]
- •8.2. Цифровая голография [3-5]
- •8.2.1. Общая процедура изготовления синтезированной голограммы
- •8.2.2. Получение цифровой голограммы Фурье и ее бинаризация
- •8.2.3. Киноформ
- •8.3. Фазовая проблема в оптике. Cоздание на основе решения обратных задач нового класса оптических элементов [1, 2, 6-9]
- •8.3.1. Извлечение фазовой информации из данных об интенсивности
- •8.3.2. Особенности расчета характеристик фокусаторов и корректоров излучения
- •8.3.3. Дифракционные оптические элементы
- •8.3.4. Создание фокусаторов на основе управляемых зеркал
- •8.4. Фокусировка излучения при наличии случайных помех. Использование методов адаптивной оптики [7-9]
- •8.5. Оптические элементы для анализа и формирования поперечного состава излучения [1]
- •8.6. Цифровая обработка полей в оптических системах [10-13]
- •8.6.1. Виды обработки оптических полей
- •8.6.2. Автоматизированная измерительная система для диагностики структуры лазерных пучков
- •Глава 9. Запись и обработка оптической информации
- •9.1. Общая характеристика оптических систем [1-3]
- •9.2. Однолинзовая система [1-4]
- •9.2.1. Линзы как элементы, выполняющие преобразование Фурье
- •9.2.2. Формирование изображения [1]
- •9.3. Получение изображений в сложных системах [1, 8]
- •9.3.1. Дифракционно-ограниченные системы
- •9.4. Учет аберраций [5]
- •9.5. Голографическая запись информации [2, 6-9]
- •9.5.1. Принцип голографической записи
- •9.5.2. Голограммы Фурье
- •9.6. Оптическая фильтрация и распознавание образов [2,3]
- •9.6.1. Применение системы 4-f
- •9.6.2. Голографический метод синтезирования пространственных фильтров и проблема апостериорной обработки информации
- •9.7. Сопоставление методов когерентной и некогерентной оптики [2]
- •9.8. Характеристики качества изображения [10]
- •Оглавление
9.6.2. Голографический метод синтезирования пространственных фильтров и проблема апостериорной обработки информации
Эффективность пространственной фильтрации во многом определяется качеством используемых фильтров с заданной переходной функцией. Для синтезирования пространственных фильтров успешно используются голографические методы. На рис. 3.6.2 изображена голографическая схема получения пространственных фильтров, известная как схема Ван дер Люгта. Она включает следующие элементы: пластину 2, на которой записан оптический сигнал h(x ,h ), описывающий переходную функцию системы; собирающую линзу 3 с фокусным расстоянием F, производящую Фурье-преобразование сигнала h(x ,h ); голограмму 4 с записью пространственного фильтра; призму 5, формирующую из части падающего на систему светового потока 1 плоскую волну, падающую на голограмму под углом Q. При записи голограммы объектной волной является волна
где
а опорной волной - волна
где
Рассчитаем модуляционную характеристику голограммы
(9.6.8)
В случае использования этой голограммы в качестве пространственного фильтра для некоторого входного сигнала существенным является наличие в характеристике (9.6.8) третьего и четвертого членов. Они действуют как пространственные фильтры Н и Н*. Их действие приводит к тому, что после второго Фурье-преобразования в выходной плоскости системы (рис.9.6.1) будут присутствовать сигналы
(9.6.9)
(9.6.10)
Из
выражений (9.6.9) и (9.6.10) видно, что выходной
сигнал, полученный при использовании
фильтра Н, будет сдвинут вверх по
вертикали на расстояние
,
сигнал же, полученный при использовании
фильтра Н*, будет на то же расстояние
сдвинут вниз. Таким образом появляется
возможность рассматривать эти
сигналы порознь.
|
Рис. 9.6.2. Схема Ван дер Люгта для синтеза пространственных
фильтров
Рассмотренный голографический метод получения пространственных фильтров снимает проблему синтеза оптических масок в пространстве частот. Трудности же синтеза оптических масок в пространстве координат менее серьезны, поскольку требуемые переходные функции (импульсные отклики), как правило, имеют простую форму и необходимые маски с пропусканием h(x ,h ) несложно изготовить с помощью простых фотографических средств.
Синтезирование пространственных фильтров голографическими методами позволяет успешно решать важную в практическом отношении задачу улучшения качества оптических изображений, выполняемого уже после того, как получено изображение. Такая задача относится к задачам, связанным с апостериорной ("послеопытной") обработкой информации.
Пусть некоторая оптическая система формирует изображение интересующего нас объекта. Идущая от объекта световая волна может рассматриваться как входной сигнал y (x,y), а изображение объекта - как выходной сигнал y '(x',y'). Если бы система не вносила искажений, то имело бы место равенство y=y '. Однако в реальной ситуации следует считаться с тем, что любая система вносит определенные искажения, которые описываются некоторой переходной функцией (или передаточной функцией Н). С помощью голографических методов можно синтезировать пространственный фильтр с модуляционной характеристикой H*. Совмещая его с фильтром, синтезированным обычным фотоспособом, получим составной фильтр с модуляционной характеристикой
(9.6.11)
Для
апостериорной обработки искаженного
сигнала y ' воспользуемся схемой 4-F (рис.
9.6.1) В ее входной плоскости разместим
искажение y ', а в спектральной плоскости
разместим фильтр с модуляционной
характеристикой (9.6.11). Тогда в выходной
плоскости системы 4-F сформируется
сигнал
.
Так как S'=SH, то согласно (9.6.11)
(9.6.12)
Это
означает, что
Таким образом, благодаря модуляционной
характеристике (9.6.11) фильтр "учел"
и автоматически "вычел" те искажения,
которые оптическая система внесла при
построении изображения.