- •Глава 1. Теоретические основы прикладной оптики
- •1.1. Природа света. Волновой и квантовый характер световых явлений
- •1.2. Законы распространения света
- •1.3. Способы определения скорости света
- •1.4. Когерентность [7]
- •1.4.1. Степень когерентности светового пучка
- •1.4.2. Методы измерения пространственной и временной когерентности
- •1.5. Дисперсия света
- •1.6. Интерференция света
- •1.7. Интерференционные линии равной толщины и равного наклона
- •1.8. Интерферометры
- •1.8.1. Интерферометр Линника
- •1.8.2. Интерферометр Рэлея
- •1.8.3. Звездный интерферометр Майкельсона
- •1.8.7. Схема интерферометра Майкельсона
- •1.8.4. Интерферометр Фабри-Перо
- •1.8.5. Интерферометр Жамена
- •1.8.6. Интерферометр Рождественского
- •1.8.7. Использование интерференции света в промышленности
- •1.9. Дифракция света. Принцип Гюйгенса Френеля
- •1.10. Дифракция Фраунгофера
- •1.10.1. Дифракция от щели
- •1.10.2. Дифракционная решетка
- •1.10.3. Дифракционная решетка как спектральный прибор
- •1.11. Дифракция на круглом отверстии
- •1.11.1. Зоны Френеля
- •1.11.2. Зонная пластинка
- •1.11.3. Линза как дифракционный прибор
- •1.11.4. Пятно Пуассона
- •1.12. Поляризация света
- •1.12.1. Свет поляризованный и неполяризованный. Закон Малюса
- •1.12.2. Одноосные кристаллы
- •1.12.3. Скрещенные поляризаторы
- •1.12.4. Двойное лучепреломление
- •1.12.5. Поляризаторы
- •1.12.6. Анализ поляризованного света
- •1.12.7. Естественное вращение плоскости поляризации
- •1.12.8. Эффект Зеемана и поляризация
- •1.12.9. Искусственное двойное лучепреломление
- •1.12.10. Магнитное вращение плоскости поляризации
- •1.13. Оптически бесцветное стекло. Марки стекла
- •1.14. Требования к стеклу. Классы и категория стекла
- •1.15. Цветное оптическое стекло. Техническое стекло
- •1.16. Выполнение рабочих чертежей оптических деталей в соответствии с ескд
- •Глава 2. Основные оптические детали
- •2.1. Зеркала
- •2.2. Тонкие линзы
- •2.3. Плоскопараллельная пластинка
- •2.4. Оптический клин
- •2.5. Отражательные призмы
- •2.6. Развертка призм в плоскопараллельную пластинку
- •Для прямоугольной призмы с двумя отражениями
- •2.7. Редуцирование призм. Графоаналитический метод расчета призм
- •2.8. Компенсаторы
- •Глава 3. Основные свойства идеальной оптической системы
- •3.1. Идеальная оптическая система
- •3.2. Линейное и угловое увеличение оптической системы.
- •3.3. Правило знаков
- •3.4. Основные оптические формулы. Построение изображения
- •3.5. Инвариант Аббе
- •3.6. Расчет хода нулевого луча
- •3.7. Отдельная линза в воздухе
- •3.8. Расчет хода нулевого луча через сложную оптическую систему
- •3.9. Оптическая система из двух компонент
- •Положим и выберем произвольно, тогда из формул
- •3.10. Графический способ определения хода нулевого луча
- •3.11. Определение хода действительного луча
- •Глава IV. Общие свойства оптических систем
- •4.1. Основные характеристики оптического прибора
- •4.2. Видимое увеличение
- •4.3. Основные фотометрические понятия
- •4.4. Потери света
- •4.5. Диафрагмы и их значение
- •4.6. Виньетирование
- •4.7. Светосила
- •4.8. Освещенность по полю изображения
- •4.9. Поле зрения
- •4.10. Глубина изображаемого пространства
- •4.11. Глубина резкости
- •4.12. Аберрации оптических систем
- •4.12.1. Классификация аберраций
- •4.12.2. Хроматическая аберрация
- •4.12.3. Сферическая аберрация
- •4.12.4. Астигматизм и кривизна изображения
- •4.12.5. Кома
- •Величина, численно характеризующая кому, равна
- •4.12.6. Дисторсия
- •Глава 5. Теория оптических приборов
- •5.1. Зрачки и люки
- •5.2. Отрезки, определяющие положение зрачков
- •5.3. Передача перспективы оптическими приборами
- •5.4. Основные фотометрические величины
- •Мы имеем
- •5.5. Источники излучения
- •5.6. Приемники световой энергии
- •5.7. Светосила оптического прибора
- •5.8. Светосила оптического прибора с малой передней апертурой и малой задней апертурой
- •5.9. Потери света в оптическом приборе
- •Преобразуем эту формулу
- •5.10. Глаз человека
- •5.11. Видимое увеличение оптического прибора
- •5.12. Глубина резкости фотографического аппарата, лупы и микроскопа
- •5.13. Критерий разрешающей способности оптического прибора
- •5.14. Разрешающая способность зрительных труб и фотографических объективов
- •Глава 6. Теория микроскопа
- •6.1. Оптическая система микроскопа
- •Из формулы
- •6.2. Формулы геометрической теории микроскопа
- •Поэтому
- •6.3. Осветительная система микроскопа
- •6.4. Основы дифракционной теории микроскопа
- •6.5. Разрешающая способность микроскопа
- •Окуляр, в нашем случае, есть лупа, для которой мы имели формулу
- •6.6. Фазовый контраст
- •6.7. Производство современных микроскопов
- •6.7.1. Световые
- •Микроскопы серии dm lm
- •Глава 7. Теория телескопических систем
- •7.1. Телескопические системы
- •Для продольного увеличения была получена формула
- •7.2. Зрительная труба Галилея
- •7.3. Зрительная труба Кеплера
- •7.4. Окуляры и объективы зрительных труб
- •7.5. Зрительные трубы с призменными оборачивающими системами
- •7.6. Зрительные трубы с линзовыми оборачивающими системами
- •7.7. Телескопические системы со скачкообразной переменной увеличения
- •Глава 8. Методы компьютерной оптики
- •8.1. Задачи компьютерной оптики [1,2]
- •8.2. Цифровая голография [3-5]
- •8.2.1. Общая процедура изготовления синтезированной голограммы
- •8.2.2. Получение цифровой голограммы Фурье и ее бинаризация
- •8.2.3. Киноформ
- •8.3. Фазовая проблема в оптике. Cоздание на основе решения обратных задач нового класса оптических элементов [1, 2, 6-9]
- •8.3.1. Извлечение фазовой информации из данных об интенсивности
- •8.3.2. Особенности расчета характеристик фокусаторов и корректоров излучения
- •8.3.3. Дифракционные оптические элементы
- •8.3.4. Создание фокусаторов на основе управляемых зеркал
- •8.4. Фокусировка излучения при наличии случайных помех. Использование методов адаптивной оптики [7-9]
- •8.5. Оптические элементы для анализа и формирования поперечного состава излучения [1]
- •8.6. Цифровая обработка полей в оптических системах [10-13]
- •8.6.1. Виды обработки оптических полей
- •8.6.2. Автоматизированная измерительная система для диагностики структуры лазерных пучков
- •Глава 9. Запись и обработка оптической информации
- •9.1. Общая характеристика оптических систем [1-3]
- •9.2. Однолинзовая система [1-4]
- •9.2.1. Линзы как элементы, выполняющие преобразование Фурье
- •9.2.2. Формирование изображения [1]
- •9.3. Получение изображений в сложных системах [1, 8]
- •9.3.1. Дифракционно-ограниченные системы
- •9.4. Учет аберраций [5]
- •9.5. Голографическая запись информации [2, 6-9]
- •9.5.1. Принцип голографической записи
- •9.5.2. Голограммы Фурье
- •9.6. Оптическая фильтрация и распознавание образов [2,3]
- •9.6.1. Применение системы 4-f
- •9.6.2. Голографический метод синтезирования пространственных фильтров и проблема апостериорной обработки информации
- •9.7. Сопоставление методов когерентной и некогерентной оптики [2]
- •9.8. Характеристики качества изображения [10]
- •Оглавление
9.6. Оптическая фильтрация и распознавание образов [2,3]
9.6.1. Применение системы 4-f
Рассмотрим устройство, состоящее из двух линз (рис. 9.6.1). Расположим их так, чтобы предметная плоскость (x,y) совпадала c передней фокальной плоскостью линзы 1, а задняя фокальная плоскость линзы 1 совпадала c передней фокальной плоскостью линзы 2. Плоскость изображений (x',y') совместим с задней фокальной плоскостью линзы 2.
Рис. 9.6.1.
Рис. 9.6.1 иллюстрирует случай, когда линзы имеют одинаковые фокусные расстояния F; выделенная на нем плоскость (x1,h 1) является плоскостью линзы 1, плоскость (x2,h 2) является спектральной плоскостью, а плоскость (x3,h 3) - плоскостью линзы 2. Рассматриваемая оптическая система известна в литературе как система 4-F. Она осуществляет два последовательных преобразования Фурье.
Сначала входной сигнал (x,y) подвергается Фурье-преобразованию линзой 1. Световое поле в плоскости (x2,h 2) распределено в соответствии со спектром сигнала S(fx,fy)
(9.6.1)
Здесь мы воспользуемся тем, что x 2=l Ffx, h 2=l Ffy.
Сигнал y x (x 2,h 2), пропорциональный спектру S(fx,fy), подвергается аналогичному преобразованию Фурье при прохождении через линзу 2. Тем самым в плоскости изображений распределение поля будет иметь вид
(9.6.2)
Таким образом, система 4-F восстанавливает в плоскости изображений входной сигнал в перевернутом виде.
Систему 4-F можно с успехом использовать для пространственной фильтрации. Для этого в плоскости (x 2,h 2) помещают пространственный фильтр. Если фильтр имеет модуляционную характеристику T(x 2,h 2), то после прохождения фильтра спектр S(fx,fy) входного сигнала принимает вид
(9.6.3)
При
этом в плоскости изображений будет
формироваться сигнал
,
соответствующий спектру
.
Тем самым, меняя модуляционную
характеристику фильтра, можно обеспечить
требуемое преобразование оптического
пространственного сигнала.
Пространственная
фильтрация широко используется для
решения задач, связанных с проблемой
распознавания образов. Предположим,
что на входе системы 4-F помимо полезного
сигнала присутствуют посторонние
сигналы (помехи)
и
(9.6.4)
Тогда в спектральной плоскости будет формироваться сумма спектров:
(9.6.5)
Если в спектральной плоскости расположить фильтр с модуляционной характеристикой
(9.6.6)
то
сразу за ним спектр сигнала
принимает вид
(9.6.7)
Волновой
фронт поля
в плоскости (x 2,h 2) является плоским,
поэтому, проходя через линзу 2, это
световое поле должно фокусироваться в
точку на плоскости изображения. Второе
слагаемое в (9.6.7) представляет поле не
с плоским фронтом, его преобразование
линзой 2 дает на выходной плоскости
некоторое распределенное изображение.
Пространственный фильтр, превращающий парциальную световую волну, несущую информацию о полезном сигнале, в плоскую волну, называют согласованным с полезным (распознаваемым) сигналом.
Если во входной волне содержится полезный сигнал, то присутствие в системе согласованного фильтра приводит к появлению в выходной плоскости яркой светящейся точки. Фиксируя появление этой точки, можно регистрировать наличие на входе системы распознаваемого сигнала.
