
- •Глава 1. Теоретические основы прикладной оптики
- •1.1. Природа света. Волновой и квантовый характер световых явлений
- •1.2. Законы распространения света
- •1.3. Способы определения скорости света
- •1.4. Когерентность [7]
- •1.4.1. Степень когерентности светового пучка
- •1.4.2. Методы измерения пространственной и временной когерентности
- •1.5. Дисперсия света
- •1.6. Интерференция света
- •1.7. Интерференционные линии равной толщины и равного наклона
- •1.8. Интерферометры
- •1.8.1. Интерферометр Линника
- •1.8.2. Интерферометр Рэлея
- •1.8.3. Звездный интерферометр Майкельсона
- •1.8.7. Схема интерферометра Майкельсона
- •1.8.4. Интерферометр Фабри-Перо
- •1.8.5. Интерферометр Жамена
- •1.8.6. Интерферометр Рождественского
- •1.8.7. Использование интерференции света в промышленности
- •1.9. Дифракция света. Принцип Гюйгенса Френеля
- •1.10. Дифракция Фраунгофера
- •1.10.1. Дифракция от щели
- •1.10.2. Дифракционная решетка
- •1.10.3. Дифракционная решетка как спектральный прибор
- •1.11. Дифракция на круглом отверстии
- •1.11.1. Зоны Френеля
- •1.11.2. Зонная пластинка
- •1.11.3. Линза как дифракционный прибор
- •1.11.4. Пятно Пуассона
- •1.12. Поляризация света
- •1.12.1. Свет поляризованный и неполяризованный. Закон Малюса
- •1.12.2. Одноосные кристаллы
- •1.12.3. Скрещенные поляризаторы
- •1.12.4. Двойное лучепреломление
- •1.12.5. Поляризаторы
- •1.12.6. Анализ поляризованного света
- •1.12.7. Естественное вращение плоскости поляризации
- •1.12.8. Эффект Зеемана и поляризация
- •1.12.9. Искусственное двойное лучепреломление
- •1.12.10. Магнитное вращение плоскости поляризации
- •1.13. Оптически бесцветное стекло. Марки стекла
- •1.14. Требования к стеклу. Классы и категория стекла
- •1.15. Цветное оптическое стекло. Техническое стекло
- •1.16. Выполнение рабочих чертежей оптических деталей в соответствии с ескд
- •Глава 2. Основные оптические детали
- •2.1. Зеркала
- •2.2. Тонкие линзы
- •2.3. Плоскопараллельная пластинка
- •2.4. Оптический клин
- •2.5. Отражательные призмы
- •2.6. Развертка призм в плоскопараллельную пластинку
- •Для прямоугольной призмы с двумя отражениями
- •2.7. Редуцирование призм. Графоаналитический метод расчета призм
- •2.8. Компенсаторы
- •Глава 3. Основные свойства идеальной оптической системы
- •3.1. Идеальная оптическая система
- •3.2. Линейное и угловое увеличение оптической системы.
- •3.3. Правило знаков
- •3.4. Основные оптические формулы. Построение изображения
- •3.5. Инвариант Аббе
- •3.6. Расчет хода нулевого луча
- •3.7. Отдельная линза в воздухе
- •3.8. Расчет хода нулевого луча через сложную оптическую систему
- •3.9. Оптическая система из двух компонент
- •Положим и выберем произвольно, тогда из формул
- •3.10. Графический способ определения хода нулевого луча
- •3.11. Определение хода действительного луча
- •Глава IV. Общие свойства оптических систем
- •4.1. Основные характеристики оптического прибора
- •4.2. Видимое увеличение
- •4.3. Основные фотометрические понятия
- •4.4. Потери света
- •4.5. Диафрагмы и их значение
- •4.6. Виньетирование
- •4.7. Светосила
- •4.8. Освещенность по полю изображения
- •4.9. Поле зрения
- •4.10. Глубина изображаемого пространства
- •4.11. Глубина резкости
- •4.12. Аберрации оптических систем
- •4.12.1. Классификация аберраций
- •4.12.2. Хроматическая аберрация
- •4.12.3. Сферическая аберрация
- •4.12.4. Астигматизм и кривизна изображения
- •4.12.5. Кома
- •Величина, численно характеризующая кому, равна
- •4.12.6. Дисторсия
- •Глава 5. Теория оптических приборов
- •5.1. Зрачки и люки
- •5.2. Отрезки, определяющие положение зрачков
- •5.3. Передача перспективы оптическими приборами
- •5.4. Основные фотометрические величины
- •Мы имеем
- •5.5. Источники излучения
- •5.6. Приемники световой энергии
- •5.7. Светосила оптического прибора
- •5.8. Светосила оптического прибора с малой передней апертурой и малой задней апертурой
- •5.9. Потери света в оптическом приборе
- •Преобразуем эту формулу
- •5.10. Глаз человека
- •5.11. Видимое увеличение оптического прибора
- •5.12. Глубина резкости фотографического аппарата, лупы и микроскопа
- •5.13. Критерий разрешающей способности оптического прибора
- •5.14. Разрешающая способность зрительных труб и фотографических объективов
- •Глава 6. Теория микроскопа
- •6.1. Оптическая система микроскопа
- •Из формулы
- •6.2. Формулы геометрической теории микроскопа
- •Поэтому
- •6.3. Осветительная система микроскопа
- •6.4. Основы дифракционной теории микроскопа
- •6.5. Разрешающая способность микроскопа
- •Окуляр, в нашем случае, есть лупа, для которой мы имели формулу
- •6.6. Фазовый контраст
- •6.7. Производство современных микроскопов
- •6.7.1. Световые
- •Микроскопы серии dm lm
- •Глава 7. Теория телескопических систем
- •7.1. Телескопические системы
- •Для продольного увеличения была получена формула
- •7.2. Зрительная труба Галилея
- •7.3. Зрительная труба Кеплера
- •7.4. Окуляры и объективы зрительных труб
- •7.5. Зрительные трубы с призменными оборачивающими системами
- •7.6. Зрительные трубы с линзовыми оборачивающими системами
- •7.7. Телескопические системы со скачкообразной переменной увеличения
- •Глава 8. Методы компьютерной оптики
- •8.1. Задачи компьютерной оптики [1,2]
- •8.2. Цифровая голография [3-5]
- •8.2.1. Общая процедура изготовления синтезированной голограммы
- •8.2.2. Получение цифровой голограммы Фурье и ее бинаризация
- •8.2.3. Киноформ
- •8.3. Фазовая проблема в оптике. Cоздание на основе решения обратных задач нового класса оптических элементов [1, 2, 6-9]
- •8.3.1. Извлечение фазовой информации из данных об интенсивности
- •8.3.2. Особенности расчета характеристик фокусаторов и корректоров излучения
- •8.3.3. Дифракционные оптические элементы
- •8.3.4. Создание фокусаторов на основе управляемых зеркал
- •8.4. Фокусировка излучения при наличии случайных помех. Использование методов адаптивной оптики [7-9]
- •8.5. Оптические элементы для анализа и формирования поперечного состава излучения [1]
- •8.6. Цифровая обработка полей в оптических системах [10-13]
- •8.6.1. Виды обработки оптических полей
- •8.6.2. Автоматизированная измерительная система для диагностики структуры лазерных пучков
- •Глава 9. Запись и обработка оптической информации
- •9.1. Общая характеристика оптических систем [1-3]
- •9.2. Однолинзовая система [1-4]
- •9.2.1. Линзы как элементы, выполняющие преобразование Фурье
- •9.2.2. Формирование изображения [1]
- •9.3. Получение изображений в сложных системах [1, 8]
- •9.3.1. Дифракционно-ограниченные системы
- •9.4. Учет аберраций [5]
- •9.5. Голографическая запись информации [2, 6-9]
- •9.5.1. Принцип голографической записи
- •9.5.2. Голограммы Фурье
- •9.6. Оптическая фильтрация и распознавание образов [2,3]
- •9.6.1. Применение системы 4-f
- •9.6.2. Голографический метод синтезирования пространственных фильтров и проблема апостериорной обработки информации
- •9.7. Сопоставление методов когерентной и некогерентной оптики [2]
- •9.8. Характеристики качества изображения [10]
- •Оглавление
1.12.3. Скрещенные поляризаторы
y
X
Z d
F
Эксперименты с одноосными кристаллами обычно проводятся с использованием скрещенных поляризаторов. При этом оси поляризаторов обычно направляются под углом 450 к вертикали. Соответственно, и направление плоскости поляризации составляет 450 к вертикали.
Амплитуды колебаний x- и y-составляющих электрического поля одинаковы при таких условиях. Естественно, свет через такую систему не проходит.
Иное дело, если между скрещенными поляризаторами помещается кристалл, оптическую ось которого обычно направляют вертикально.
Луч,
вдоль которой распространяется волна
является обыкновенным - направление
вектора электрического поля для него
перпендикулярно оптической оси,
показатель преломления
.
У другого луча
направление
поляризации совпадает с осью кристалла
и показатель преломления
.
Эти лучи мы будем называть обыкновенным
и необыкновенным. Заметим еще раз, что
различаются эти лучи направлением
плоскости поляризации по отношению к
оси кристалла. Заметим также, что
направление поляризации это ни что
иное, как направление действующей на
электроны вещества силы. Значения
показателей преломления различны
потому, что собственные частоты колебаний
электронов вдоль оси и в поперечном
направлении различны.
Из-за
различия показателей преломления внутри
кристалла эти лучи, двигаясь параллельно,
пройдут разные оптические пути -
и
,
возникнет разность фаз колебаний.
Проходящий через систему скрещенных
поляризаторов свет можно зафиксировать
помещенным за системой поляризаторов
фотоприемником. Результат определяется
тем, какой будет поляризация после
прохождения светом поляризатора и
кристаллической пластинки.
Рассмотрим подробнее, какие здесь возможны случаи.
При прохождении светом одноосного кристалла у обыкновенного и необыкновенного лучей фазы изменятся таким образом:
;
.
Разность фаз колебаний в этих лучах после прохождения кристалла (но перед вторым поляризатором!) будет
.
И будем еще помнить, что это разность фаз колебаний y- и x-колебаний электрического вектора волны после прохождения кристалла.
Естественно,
не представляет особого интереса случай,
когда
- в этом случае вид поляризации не
изменится, свет через скрещенные
поляризаторы проходить не будет. Если
вращать второй поляризатор, используя
его как анализатор, интенсивность в
зависимости от угла поворота будет
изменяться по закону Малюса.
Изменяя
толщину пластинки, можно добиться
выполнения условия
.
В этом случае y-
и x-колебаний
электрического вектора волны (волн)
будут происходить в противофазе. Это
означает поворот плоскости поляризации
света на 900.
Свет не будет задерживаться вторым
поляризатором, с ось которого теперь
совпадает направление поляризации. Но
при повороте анализатора опять-таки
будет выполняться закон Малюса.
Возникновение при прохождение пластинки разности фаз означает, что один из лучей отстал от другого на нечетное количество полуволн - такая кристаллическая пластинка называется “пластинкой в пол волны”.
Круговой
после прохождения кристаллической
пластинки поляризация будет при условии
.
Такая пластинка по понятным причинам
называется пластинкой “в четверть
волны”.
Y
Y’
EY X’
EY’
EX
0 X
EX’
Наконец, при произвольной толщине пластинки поляризация будет, вообще говоря, эллиптической. При этом оси эллипса составят угол 450 с осью кристалла. Свяжем параметры эллипса с толщиной и показателями преломления n0 и ne кристаллической пластинки.
Запишем колебания электрического вектора световой волны после прохождения кристаллической пластинки:
.
Проведя проецирование этих составляющих на оси повернутой на угол = 450 системы координат, мы получим:
;
.
Проведя сложение тригонометрических функций в скобках, получим:
;
.
Введя
обозначение
,
можем записать:
.
Мы исключили из уравнений время и получили уравнение эллипса с полуосями
;
.
Теперь мы доказали, что при произвольной толщине кристаллической пластинки d линейно поляризованный свет после ее прохождения будет поляризован эллиптически.