
- •Глава 1. Теоретические основы прикладной оптики
- •1.1. Природа света. Волновой и квантовый характер световых явлений
- •1.2. Законы распространения света
- •1.3. Способы определения скорости света
- •1.4. Когерентность [7]
- •1.4.1. Степень когерентности светового пучка
- •1.4.2. Методы измерения пространственной и временной когерентности
- •1.5. Дисперсия света
- •1.6. Интерференция света
- •1.7. Интерференционные линии равной толщины и равного наклона
- •1.8. Интерферометры
- •1.8.1. Интерферометр Линника
- •1.8.2. Интерферометр Рэлея
- •1.8.3. Звездный интерферометр Майкельсона
- •1.8.7. Схема интерферометра Майкельсона
- •1.8.4. Интерферометр Фабри-Перо
- •1.8.5. Интерферометр Жамена
- •1.8.6. Интерферометр Рождественского
- •1.8.7. Использование интерференции света в промышленности
- •1.9. Дифракция света. Принцип Гюйгенса Френеля
- •1.10. Дифракция Фраунгофера
- •1.10.1. Дифракция от щели
- •1.10.2. Дифракционная решетка
- •1.10.3. Дифракционная решетка как спектральный прибор
- •1.11. Дифракция на круглом отверстии
- •1.11.1. Зоны Френеля
- •1.11.2. Зонная пластинка
- •1.11.3. Линза как дифракционный прибор
- •1.11.4. Пятно Пуассона
- •1.12. Поляризация света
- •1.12.1. Свет поляризованный и неполяризованный. Закон Малюса
- •1.12.2. Одноосные кристаллы
- •1.12.3. Скрещенные поляризаторы
- •1.12.4. Двойное лучепреломление
- •1.12.5. Поляризаторы
- •1.12.6. Анализ поляризованного света
- •1.12.7. Естественное вращение плоскости поляризации
- •1.12.8. Эффект Зеемана и поляризация
- •1.12.9. Искусственное двойное лучепреломление
- •1.12.10. Магнитное вращение плоскости поляризации
- •1.13. Оптически бесцветное стекло. Марки стекла
- •1.14. Требования к стеклу. Классы и категория стекла
- •1.15. Цветное оптическое стекло. Техническое стекло
- •1.16. Выполнение рабочих чертежей оптических деталей в соответствии с ескд
- •Глава 2. Основные оптические детали
- •2.1. Зеркала
- •2.2. Тонкие линзы
- •2.3. Плоскопараллельная пластинка
- •2.4. Оптический клин
- •2.5. Отражательные призмы
- •2.6. Развертка призм в плоскопараллельную пластинку
- •Для прямоугольной призмы с двумя отражениями
- •2.7. Редуцирование призм. Графоаналитический метод расчета призм
- •2.8. Компенсаторы
- •Глава 3. Основные свойства идеальной оптической системы
- •3.1. Идеальная оптическая система
- •3.2. Линейное и угловое увеличение оптической системы.
- •3.3. Правило знаков
- •3.4. Основные оптические формулы. Построение изображения
- •3.5. Инвариант Аббе
- •3.6. Расчет хода нулевого луча
- •3.7. Отдельная линза в воздухе
- •3.8. Расчет хода нулевого луча через сложную оптическую систему
- •3.9. Оптическая система из двух компонент
- •Положим и выберем произвольно, тогда из формул
- •3.10. Графический способ определения хода нулевого луча
- •3.11. Определение хода действительного луча
- •Глава IV. Общие свойства оптических систем
- •4.1. Основные характеристики оптического прибора
- •4.2. Видимое увеличение
- •4.3. Основные фотометрические понятия
- •4.4. Потери света
- •4.5. Диафрагмы и их значение
- •4.6. Виньетирование
- •4.7. Светосила
- •4.8. Освещенность по полю изображения
- •4.9. Поле зрения
- •4.10. Глубина изображаемого пространства
- •4.11. Глубина резкости
- •4.12. Аберрации оптических систем
- •4.12.1. Классификация аберраций
- •4.12.2. Хроматическая аберрация
- •4.12.3. Сферическая аберрация
- •4.12.4. Астигматизм и кривизна изображения
- •4.12.5. Кома
- •Величина, численно характеризующая кому, равна
- •4.12.6. Дисторсия
- •Глава 5. Теория оптических приборов
- •5.1. Зрачки и люки
- •5.2. Отрезки, определяющие положение зрачков
- •5.3. Передача перспективы оптическими приборами
- •5.4. Основные фотометрические величины
- •Мы имеем
- •5.5. Источники излучения
- •5.6. Приемники световой энергии
- •5.7. Светосила оптического прибора
- •5.8. Светосила оптического прибора с малой передней апертурой и малой задней апертурой
- •5.9. Потери света в оптическом приборе
- •Преобразуем эту формулу
- •5.10. Глаз человека
- •5.11. Видимое увеличение оптического прибора
- •5.12. Глубина резкости фотографического аппарата, лупы и микроскопа
- •5.13. Критерий разрешающей способности оптического прибора
- •5.14. Разрешающая способность зрительных труб и фотографических объективов
- •Глава 6. Теория микроскопа
- •6.1. Оптическая система микроскопа
- •Из формулы
- •6.2. Формулы геометрической теории микроскопа
- •Поэтому
- •6.3. Осветительная система микроскопа
- •6.4. Основы дифракционной теории микроскопа
- •6.5. Разрешающая способность микроскопа
- •Окуляр, в нашем случае, есть лупа, для которой мы имели формулу
- •6.6. Фазовый контраст
- •6.7. Производство современных микроскопов
- •6.7.1. Световые
- •Микроскопы серии dm lm
- •Глава 7. Теория телескопических систем
- •7.1. Телескопические системы
- •Для продольного увеличения была получена формула
- •7.2. Зрительная труба Галилея
- •7.3. Зрительная труба Кеплера
- •7.4. Окуляры и объективы зрительных труб
- •7.5. Зрительные трубы с призменными оборачивающими системами
- •7.6. Зрительные трубы с линзовыми оборачивающими системами
- •7.7. Телескопические системы со скачкообразной переменной увеличения
- •Глава 8. Методы компьютерной оптики
- •8.1. Задачи компьютерной оптики [1,2]
- •8.2. Цифровая голография [3-5]
- •8.2.1. Общая процедура изготовления синтезированной голограммы
- •8.2.2. Получение цифровой голограммы Фурье и ее бинаризация
- •8.2.3. Киноформ
- •8.3. Фазовая проблема в оптике. Cоздание на основе решения обратных задач нового класса оптических элементов [1, 2, 6-9]
- •8.3.1. Извлечение фазовой информации из данных об интенсивности
- •8.3.2. Особенности расчета характеристик фокусаторов и корректоров излучения
- •8.3.3. Дифракционные оптические элементы
- •8.3.4. Создание фокусаторов на основе управляемых зеркал
- •8.4. Фокусировка излучения при наличии случайных помех. Использование методов адаптивной оптики [7-9]
- •8.5. Оптические элементы для анализа и формирования поперечного состава излучения [1]
- •8.6. Цифровая обработка полей в оптических системах [10-13]
- •8.6.1. Виды обработки оптических полей
- •8.6.2. Автоматизированная измерительная система для диагностики структуры лазерных пучков
- •Глава 9. Запись и обработка оптической информации
- •9.1. Общая характеристика оптических систем [1-3]
- •9.2. Однолинзовая система [1-4]
- •9.2.1. Линзы как элементы, выполняющие преобразование Фурье
- •9.2.2. Формирование изображения [1]
- •9.3. Получение изображений в сложных системах [1, 8]
- •9.3.1. Дифракционно-ограниченные системы
- •9.4. Учет аберраций [5]
- •9.5. Голографическая запись информации [2, 6-9]
- •9.5.1. Принцип голографической записи
- •9.5.2. Голограммы Фурье
- •9.6. Оптическая фильтрация и распознавание образов [2,3]
- •9.6.1. Применение системы 4-f
- •9.6.2. Голографический метод синтезирования пространственных фильтров и проблема апостериорной обработки информации
- •9.7. Сопоставление методов когерентной и некогерентной оптики [2]
- •9.8. Характеристики качества изображения [10]
- •Оглавление
1.2. Законы распространения света
Уже в первые периоды оптических исследований были опытным путем установлены основные законы распространения света. Это:
1). Закон прямолинейного распространения света;
2). Закон независимости световых пучков;
3). Закон отражения;
4). Закон преломления.
При этом, основные законы геометрической оптики были известны задолго до установления физической природы света.
Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ → 0. Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.
На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а частично пройти через границу и распространяться во второй среде.
Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α.
Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:
|
|
|
Закон преломления был экспериментально установлен голландским ученым В. Снеллиусом (1621 г.).
Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления.
Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:
|
n = n2 / n1. |
|
Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2:
|
|
|
Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света υ в среде:
|
|
|
Рис 1.2.1 иллюстрирует законы отражения и преломления света.
|
Рис. 1.2.1. Законы отражения и преломления: γ = α; n1 sin α = n2 sin β
Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.
При переходе света из оптически более плотной среды в оптически менее плотную n2 < n1 (например, из стекла в воздух) можно наблюдать явление полного отражения, то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол αпр, который называется предельным углом полного внутреннего отражения (см. рис. 1.2.2).
Для угла падения α = αпр sin β = 1 значение sin αпр = n2 / n1 < 1.
Если второй средой является воздух (n2 ≈ 1), то формулу удобно переписать в виде
|
sin αпр = 1 / n, |
|
где n = n1 > 1 – абсолютный показатель преломления первой среды.
Для границы раздела стекло–воздух (n = 1,5) критический угол равен αпр = 42°, для границы вода–воздух (n = 1,33) – αпр = 48,7°.
|
Рис. 1.2.2. Полное внутреннее отражение света на границе вода–воздух; S – точечный источник света
Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов, которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис. 1.2.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой.
|
Рис. 1.2.3. Распространение света в волоконном световоде. При сильном изгибе волокна закон полного внутреннего отражения нарушается, и свет частично выходит из волокна через боковую поверхность.
|
Рис. 1.2.4. Модель 1. Отражение и преломление света
В геометрической оптике законы отражения и преломления света на границе раздела двух прозрачных сред формулируются на основе понятия световых лучей. Компьютерная модель позволяет изучать законы отражения и преломления света на границе воздух–среда и среда–воздух. При этом показатель преломления n среды может изменяться от 1 до 2. Модель является компьютерным вариантом прибора для изучения законов отражения и преломления света.
Луч света направляется на плоскую границу двух сред либо со стороны воздуха, либо со стороны исследуемой среды. В обоих случаях угол падения можно изменять в пределах от 0 до 90°. На экране дисплея высвечиваются отраженный и преломленный лучи, направления которых можно определить по круговой градусной шкале.
Обратите внимание, что при падении света на границу раздела со стороны среды (n > 1) под углом, превышающим некоторое значение α0, преломленный луч отсутствует. Это явление называется полным внутренним отражением, а угол α0 – предельным углом полного внутреннего отражения (α0 = αпр). При падении света на эту же границу со стороны воздуха преломленный луч не может отклониться от перпендикуляра к границе раздела на угол, превышающий α0.
В дальнейшем было показано, что первые два закона, закон прямолинейного распространения и закон независимости световых пучков, в следствии волнового характера световых колебаний, при определенных условиях не выполняются, в следствии чего возникают такие явления как дифракция и интерференция.