
- •Авторы-составители:
- •1.Цели и задачи дисциплины
- •1). Цель, задачи, структура дисциплины и ее место в учебном процессе.
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины Объем дисциплины и виды учебной работы Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •1. Основные понятия, определения и теоремы теории вероятностей* Введение
- •1.1. Алгебра событий. Основые понятия теории множеств
- •1.2. Основные определения: испытание, событие. Классификация событий
- •1.3. Классическое определение вероятности. Свойства, вытекающие из этого определения
- •Значение вероятности
- •1.4. Основные теоремы теории вероятностей
- •1.5. Зависимые и независимые события
- •2. Формула полной вероятности и формула Бейеса
- •2.1. Формула полной вероятности
- •3. Случайные величины
- •3.1. Дискретные случайные величины
- •Ряд распределения случайной величины X
- •3.4. Ожидаемое среднее значение дискретной случайной величины
- •Вычисление математического ожидания числа рекламных
- •3.5. Свойства математического ожидания случайной дискретной величины
- •Возможные исходы лотереи
- •3.6. Ожидаемое среднее значение функции случайной величины
- •Ряд распределения числа месячных продаж
- •К вычислению среднего ожидаемого значения
- •3.7. Дисперсия дискретной случайной величины
- •К вычислению дисперсии случайной величины
- •3.9. Дисперсия линейной функции случайной величины
- •4. Законы распределения дискретных случайных величин
- •Формула Бернулли. Биномиальные вероятности
- •4.3. Биномиальный закон распределения
- •Биномиальное распределение
- •Биномиальное распределение X – числа гербов, появляющихся
- •Фрагмент таблиц ряда и функции биномиального распределения
- •Биномиальное распределение числа покупателей
- •Распределения
- •4.5. Распределение Пуассона
- •Закон распределения Пуассона
- •Сравнение вероятностей, полученных по формулам Бернулли и Пуассона
- •4.6. Гипергеометрическое распределение
- •Гипергеометрический закон распределения
- •Биномиальный закон распределения
- •Гипергеометрическое распределение
- •4.7. Производящая функция
- •4.8. Мультиномиальное распределение
- •4.9. Геометрическое распределение
- •5. Непрерывные случайные величины
- •6. Законы распределения непрерывных случайных величин
- •7. Закон больших чисел
- •7.1. Принцип практической уверенности. Формулировка закона больших чисел
- •7.2. Неравенства Маркова и Чебышева
- •Выражения (7.1–7.2) справедливы для дискретных и непрерывных случайных величин.
- •7.4. Теорема Бернулли
- •7.5. Теорема Пуассона
- •Контрольные задания по курсу теории вероятностей Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
- •Вариант 31
- •Вариант 32
- •Вариант 33
- •Вариант 34
- •Вариант 35
- •Вариант 36
- •Вариант 37
- •Вариант 38
- •Вариант 39
- •Вариант 40
- •Математическая статистика Теория вероятностей и математическая статистика – основной инструментарий для прикладной статистики
- •Дисперсией случайной величины х называется число dx , равное математическому ожиданию квадрата отклонения случайной величины от своего математического ожидания: . (1.4)
- •Контрольные вопросы и задачи
- •Статистическое оценивание
- •Интервальная оценка для генеральной доли
- •Контрольные вопросы и задачи
- •Тема 3. Статистическая проверка гипотез
- •Общая логическая схема статистического критерия.
- •Проверка гипотезы о значении генеральной средней
- •Проверка гипотезы о значении дисперсии генеральной совокупности
- •Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- •Гипотеза об однородности рада вероятностей
- •Гипотезы о виде законов распределения генеральной совокупности
- •Контрольные вопросы и задачи
- •Тема 4. Методика статистического анализа количественных и качественных показателей
- •Контрольные вопросы и задачи
- •Тема 5. Многомерные статистические методы
- •Темы практических и семинарских занятий, тематических дискуссий
- •Задания для самостоятельной работы студентов
- •1.Методы анализов рядов динамики. Особенности моделирования рядов динамики с помощью корреляционного - регрессионного анализа
- •2. Понятие о закономерности распределения. Изучение формы распределения
- •3. Матрицы и таблицы сопряженности
- •4.Понятие о статистическом графике. Элементы статистического графика
- •5. Классификация видов графика: диаграммы сравнения, структурные диаграммы и диаграммы динамиков. Статистические карты
- •6. Условия типичности средних величин
- •7. Понятие малой выборки и методы расчета ее средней ошибки
- •8. Основные направления применения выборочного наблюдения в социально-экономических исследованиях
- •9. Взаимосвязи социально-экономических явлений и процессов, задачи их статического изучения.
- •10. Роль качественного анализа в исследовании связей
- •11. Основные статистические методы изучения связей в торговле и сфере услуг: метод параллельных данных, метод аналитических группировок, графический метод, балансовый метод.
- •12.Применение дисперсионного анализа в экономико-статистических исследованиях
- •13. Регрессионное уравнение как форма аналитического выражения статистических связей
- •14. Способы отбора факторных признаков при построении регрессионных моделей
- •15. Оценка результатов корреляционно-регрессионного анализа
- •7.Темы курсовых/контрольных работ/рефератов Варианты контрольных работ для студентов заочной формы обучения всех специальностей Вариант первый
- •Вариант второй
- •Вариант третий
- •Вариант четвертый
- •Вариант пятый
- •Вариант шестой
- •Вариант седьмой
- •Учебно-методическое обеспечение Литература:
- •16. Елисеева и.И., Юзбашев м.М. – Общая теория статистики. Учебник - м.: Финансы и статистика, 2005. Материально-техническое и информационное обеспечение дисциплин
2. Формула полной вероятности и формула Бейеса
2.1. Формула полной вероятности
Рассмотрим
два события
А
и
Н.
Каковы бы ни были взаимоотношения между
событиями А
и
Н,
всегда
можно сказать, что вероятность события
А
равна
вероятности пересечения событий А
и
Н плюс
вероятность пересечения А
и
дополнения Н
(событие
).
Поясним сказанное на диаграмме Венна
(рис. 2.1). Разложение А
на
части зависит от
и
.
Р(А)
=
Р(А
Н)
+
Р(А∩
).
(2.1)
Рис. 2.1. Диаграмма Венна к формуле (2.1)
Наборы и – форма расчленения набора A на два подмножества взаимно несовместных событий. События Н и взаимно противоположны. Событие А может произойти либо с Н, либо с , но не с двумя вместе (см. рис. 2.1).
Рассмотрим более сложный случай. Пусть событие А может осуществляться лишь вместе с одним из событий Н1, H2, H3,..., Hn, образующих полную группу, т. е. эти события являются единственно возможными и несовместными (рис. 2.2). Так как заранее неизвестно, какое из событий Н1, H2, H3,..., Hn наступит, то их называют гипотезами. Пусть также известны вероятности гипотез Р(Н1), Р(Н2),…, Р(Hn) и условные вероятности события А, а именно: Р(А/Н1), Р(А/Н2),…, Р(А/Нn).
Так
как гипотезы образуют полную группу,
то
Рассмотрим событие А – это или Н1·А, или … Нn·А. События Н1·А, Н2·А, …, Нn·А – несовместные попарно, так как события Н1, H2, H3,..., Hn попарно несовместны. К этим событиям применяем теорему сложения вероятностей для несовместных событий:
Р(А)=Р(Н1·А)+Р(Н2·А)
+…+
Р(Нn
·А)
=
.
(2.2)
События Н1 и А, Н2 и А,..., Нn и А – зависимые. Применив теорему умножения вероятностей для зависимых событий, получим (рис. 2.2):
Р(А)
=
Р(Н1)∙Р(А/Н1)+
Р(Н2)∙Р(А/Н2)
+...+Р(Нn)∙Р(А/Нn)
=
=
.
Рис. 2.2. Событие А может осуществляться лишь с одним
из событий Н1, Н2, ..., Нn, образующих полную группу событий
Проиллюстрируем сказанное на примере с колодой карт (рис. 2.3). Определим А как событие, состоящее в извлечении карты с картинкой (т. е. карты с изображением или туза, или короля, или дамы, или валета). Пусть события В, С, D, Е означают извлечение карт различной масти («трефы», «бубны», «черви», «пики»). Мы можем сказать, что вероятность извлечь из колоды карту с изображением туза, короля, дамы или валета есть Р(А) = Р(А∩В) + Р(А∩С) + Р(А∩D) + Р(А∩Е) = = 4/52 + 4/52 + 4/52+4/52 = 16/52. Это означает, как мы уже знаем, вероятность извлечения карты с картинкой из колоды в 52 карты. Событие А представляет собой набор, составленный из пересечений А с наборами В, С, D, Е (рис. 2.3).
Рис. 2.3. Пример с колодой карт
Вывод. Если событие А может наступить только вместе с одним из событий Н1, Н2, Н3, ..., Нn, образующих полную группу несовместных событий и называемых гипотезами, то вероятность события А равна сумме произведений вероятностей каждого из событий Н1, Н2, Н3, ..., Нn на соответствующую условную вероятность события А.
Случай двух событий:
.
(2.3)
Случай более чем двух событий:
,
(2.4)
где i = 1, 2, ..., п.
Пример 2.1. Экономист полагает, что вероятность роста стоимости акций некоторой компании в следующем году будет равна 0,75, в случае успешного развития экономики страны, и эта же вероятность составит 0,30, если произойдет спад экономики. По его мнению, вероятность экономического подъема в будущем году равна 0,80. Используя предположения экономиста, оцените вероятность того, что акции компании поднимутся в цене в следующем году.
Решение. Событие А – «акции компании поднимутся в цене в будущем году». Составим рабочую таблицу:
Hi |
Гипотезы Hi |
Р(Hi) |
P(А/Hi) |
Р(Hi)P(А/Hi) |
1 |
H1 – «подъем экономики» |
0,80 |
0,75 |
0,60 |
2 |
H2 – «спад экономики» |
0,20 |
0,30 |
0,06 |
∑ |
1,00 |
– |
P(А) = 0,66 |
Пример 2.2. В каждой из двух урн содержится 6 черных и 4 белых шара. Из урны 1 в урну 2 наудачу переложен один шар. Найти вероятность того, что шар, извлеченный из урны 2 после перекладывания, окажется черным.
Решение. Событие А – «шар, извлеченный из урны 2, – черный». Составим рабочую таблицу:
Hi |
Гипотезы Hi |
Р(Hi) |
P(А/Hi) |
Р(Hi)P(А/Hi) |
1 |
H1 – «из урны 1 в урну 2 переложили черный шар» |
6/10 |
7/11 |
42/110 |
2 |
H2 – «из урны 1 в урну 2 переложили белый шар» |
4/10 |
6/11 |
24/110 |
∑ |
1,00 |
– |
Р(А) = 0,60 |
2.2. Вычисление вероятностей гипотез.
формула Бейеса
Представим, что существует несколько предположений (несовместных гипотез) для объяснения некоторого события. Эти предположения проверяются с помощью опыта. До проведения опыта бывает сложно точно определить вероятность этих предположений, поэтому им часто приписывают некоторые вероятности, которые называют априорными (доопытными). Затем проводят опыт и получают информацию, на основании которой корректируют априорные вероятности. После проведения эксперимента вероятность гипотез может измениться. Таким образом, доопытные вероятности заменяют послеопытными (апостериорными).
В тех
случаях, когда стало известно, что
событие А
произошло,
возникает потребность в определении
условной вероятности P(Hi/A).
Пусть
событие А
может
осуществляться лишь вместе с одной из
гипотез Hi,
(i
= 1,
2,...,
n).
Известны вероятности гипотез Р(Н1),
..., Р(Нп)
и
условные вероятности А,
т.
е. Р(А/Н1),
Р(А/Н2),…,
Р(А/Нn).
Так
как
A·Hi
=
Нi·А,
то
Р(А·Нi)
=
P(Нi·А)
или
,
а
отсюда по правилу пропорций:
.
Итак можно записать формулы Бейеса:
случай двух событий:
;
(2.5)
случай более чем двух событий:
.
(2.6)
Формулы Бейеса позволяют переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.
Как видим из выражения (2.5), вероятность события H, задаваемая при условии появления события А, получается из вероятностей событий и и из условной вероятности события А при заданном Н. Вероятности событий и называют априорными (предшествующими), вероятность Р(Н/А) называют апостериорной (последующей).
Пример 2.3. Экономист полагает, что в течение периода активного экономического роста американский доллар будет расти в цене с вероятностью 0,7, в период умеренного экономического роста доллар подорожает с вероятностью 0,4, и при низких темпах экономического роста доллар подорожает с вероятностью 0,2. В течение любого периода времени вероятность активного экономического роста равна 0,3, в периоды умеренного экономического роста – 0,5 и низкого роста – 0,2. Предположим, доллар дорожает в течение текущего периода, чему равна вероятность того, что анализируемый период совпал с периодом активного экономического роста?
Решение. Определим гипотезы: Н1 – «активный экономический рост»; H2 – «умеренный экономический рост»; H3 – «низкий экономический рост».
Определим событие А – «доллар дорожает». Имеем: Р(Н1) = 0,3; Р(Н2) = 0,5; Р(Н3) = 0,2; Р(А/Н1) = 0,7; Р(А/Н2) = 0,4 и Р(A/Н3) = 0,2. Найти: Р(Н1/А).
Используя формулу Бейеса (2.6) и подставляя заданные значения вероятностей, получаем:
Можно получить тот же результат при помощи таблицы:
Гипотезы Hi |
Априорные вероятности P(Hi) |
Условные вероятности P(A/Hi) |
Совместные вероятности Р(A∩Hi) |
Апостериорные вероятности P(Hi/А) |
H1 |
0,30 |
0,70 |
0,21 |
0,21/0,45 = 0,467 |
H2 |
0,50 |
0,40 |
0,20 |
0,20/0,45 = 0,444 |
H3 |
0,20 |
0,20 |
0,04 |
0,04/0,45 = 0,089 |
Сумма |
1,00 |
– |
0,45 |
1 |