
- •Авторы-составители:
- •1.Цели и задачи дисциплины
- •1). Цель, задачи, структура дисциплины и ее место в учебном процессе.
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины Объем дисциплины и виды учебной работы Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •1. Основные понятия, определения и теоремы теории вероятностей* Введение
- •1.1. Алгебра событий. Основые понятия теории множеств
- •1.2. Основные определения: испытание, событие. Классификация событий
- •1.3. Классическое определение вероятности. Свойства, вытекающие из этого определения
- •Значение вероятности
- •1.4. Основные теоремы теории вероятностей
- •1.5. Зависимые и независимые события
- •2. Формула полной вероятности и формула Бейеса
- •2.1. Формула полной вероятности
- •3. Случайные величины
- •3.1. Дискретные случайные величины
- •Ряд распределения случайной величины X
- •3.4. Ожидаемое среднее значение дискретной случайной величины
- •Вычисление математического ожидания числа рекламных
- •3.5. Свойства математического ожидания случайной дискретной величины
- •Возможные исходы лотереи
- •3.6. Ожидаемое среднее значение функции случайной величины
- •Ряд распределения числа месячных продаж
- •К вычислению среднего ожидаемого значения
- •3.7. Дисперсия дискретной случайной величины
- •К вычислению дисперсии случайной величины
- •3.9. Дисперсия линейной функции случайной величины
- •4. Законы распределения дискретных случайных величин
- •Формула Бернулли. Биномиальные вероятности
- •4.3. Биномиальный закон распределения
- •Биномиальное распределение
- •Биномиальное распределение X – числа гербов, появляющихся
- •Фрагмент таблиц ряда и функции биномиального распределения
- •Биномиальное распределение числа покупателей
- •Распределения
- •4.5. Распределение Пуассона
- •Закон распределения Пуассона
- •Сравнение вероятностей, полученных по формулам Бернулли и Пуассона
- •4.6. Гипергеометрическое распределение
- •Гипергеометрический закон распределения
- •Биномиальный закон распределения
- •Гипергеометрическое распределение
- •4.7. Производящая функция
- •4.8. Мультиномиальное распределение
- •4.9. Геометрическое распределение
- •5. Непрерывные случайные величины
- •6. Законы распределения непрерывных случайных величин
- •7. Закон больших чисел
- •7.1. Принцип практической уверенности. Формулировка закона больших чисел
- •7.2. Неравенства Маркова и Чебышева
- •Выражения (7.1–7.2) справедливы для дискретных и непрерывных случайных величин.
- •7.4. Теорема Бернулли
- •7.5. Теорема Пуассона
- •Контрольные задания по курсу теории вероятностей Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
- •Вариант 31
- •Вариант 32
- •Вариант 33
- •Вариант 34
- •Вариант 35
- •Вариант 36
- •Вариант 37
- •Вариант 38
- •Вариант 39
- •Вариант 40
- •Математическая статистика Теория вероятностей и математическая статистика – основной инструментарий для прикладной статистики
- •Дисперсией случайной величины х называется число dx , равное математическому ожиданию квадрата отклонения случайной величины от своего математического ожидания: . (1.4)
- •Контрольные вопросы и задачи
- •Статистическое оценивание
- •Интервальная оценка для генеральной доли
- •Контрольные вопросы и задачи
- •Тема 3. Статистическая проверка гипотез
- •Общая логическая схема статистического критерия.
- •Проверка гипотезы о значении генеральной средней
- •Проверка гипотезы о значении дисперсии генеральной совокупности
- •Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- •Гипотеза об однородности рада вероятностей
- •Гипотезы о виде законов распределения генеральной совокупности
- •Контрольные вопросы и задачи
- •Тема 4. Методика статистического анализа количественных и качественных показателей
- •Контрольные вопросы и задачи
- •Тема 5. Многомерные статистические методы
- •Темы практических и семинарских занятий, тематических дискуссий
- •Задания для самостоятельной работы студентов
- •1.Методы анализов рядов динамики. Особенности моделирования рядов динамики с помощью корреляционного - регрессионного анализа
- •2. Понятие о закономерности распределения. Изучение формы распределения
- •3. Матрицы и таблицы сопряженности
- •4.Понятие о статистическом графике. Элементы статистического графика
- •5. Классификация видов графика: диаграммы сравнения, структурные диаграммы и диаграммы динамиков. Статистические карты
- •6. Условия типичности средних величин
- •7. Понятие малой выборки и методы расчета ее средней ошибки
- •8. Основные направления применения выборочного наблюдения в социально-экономических исследованиях
- •9. Взаимосвязи социально-экономических явлений и процессов, задачи их статического изучения.
- •10. Роль качественного анализа в исследовании связей
- •11. Основные статистические методы изучения связей в торговле и сфере услуг: метод параллельных данных, метод аналитических группировок, графический метод, балансовый метод.
- •12.Применение дисперсионного анализа в экономико-статистических исследованиях
- •13. Регрессионное уравнение как форма аналитического выражения статистических связей
- •14. Способы отбора факторных признаков при построении регрессионных моделей
- •15. Оценка результатов корреляционно-регрессионного анализа
- •7.Темы курсовых/контрольных работ/рефератов Варианты контрольных работ для студентов заочной формы обучения всех специальностей Вариант первый
- •Вариант второй
- •Вариант третий
- •Вариант четвертый
- •Вариант пятый
- •Вариант шестой
- •Вариант седьмой
- •Учебно-методическое обеспечение Литература:
- •16. Елисеева и.И., Юзбашев м.М. – Общая теория статистики. Учебник - м.: Финансы и статистика, 2005. Материально-техническое и информационное обеспечение дисциплин
Гипотеза об однородности рада вероятностей
Пусть Х1, Х2,…,Хl - l генеральных совокупностей, каждая из которых характеризуется неизвестным параметром Рi , где Рi - вероятность появления события А в соответствующей выборке. Требуется на уровне значимости α проверить нулевую гипотезу Н0: р1= p2 =… = pl .
Для проверки гипотезы используется статистика
=
,
(3.30)
которая имеет асимптотическое распределение с ν= l-1 степенями свободы, l - число выборок;
где
=
- частость появления события А в i–ой
выборке;
- частота появления
события А в i–ой выборке;
- объем i–ой
выборки;
=
–
частость появления события А
во всех выборках;
=(1-
)
– частость появления события
,
противоположного событию A,
во всех выборках.
Для проверки нулевой гипотезы строят правостороннюю критическую область, границу которой определяют из условия: P ( > (α; ν))= α. (3.31)
Если < - нет оснований отвергнуть нулевую гипотезу, если > - нулевую гипотезу отвергают.
Гипотезы о виде законов распределения генеральной совокупности
Проверка гипотез о виде законов распределения генеральной совокупности осуществляется с помощью критериев согласия.
Критерием согласия называется статистический критерий, предназначенный для проверки гипотезы Н0 о том, что ряд наблюдений х1, х2,…хn образует случайную выборку, извлеченную из генеральной совокупности Х с функцией распределения F(x)=F(x;θ1; θ2;… θk), где общий вид функции F(x) считается заданным, а параметры θ1; θ2;… θk , от которых она зависит могут быть, как известными, так и неизвестными. Критерии согласия основаны на использовании различных мер расстояний между анализируемой эмпирической функцией распределения Fn(x), определяемой по выборке, и функцией распределения F (x) генеральной совокупности Х.
Математически, нулевую гипотезу можно записать в следующем виде:
Н0:
=р1,
=
р2,
=
рl,
- относительная частота i-го интервала вариационного ряда или i-го варианта, принимаемого случайной величиной Х;
рl – вероятность попадания случайной величины в i-тый интервала или вероятность того, что дискретная величина примет i-тое значение (Х=хi).
Критерий Пирсона
(критерий -
)
имеет наибольшее применение при проверке
согласования теоретической и эмпирической
функций распределения.
Процедура проверки статистической гипотезы о виде распределения с помощью критерия согласия Пирсона состоит из следующих этапов.
1. Весь диапазон значений исследуемой случайной величины разбивается на ряд интервалов группирования Δ1, Δ2, …,Δl, необязательно одинаковой длины.
2. Подсчитывается число точек, попавших в каждый из интервалов группирования Δi .
3. На основе сгруппированных данных вычисляются оценки k неизвестных параметров распределения θ k.
4. Вычисляется вероятность рi попадания случайной величины Х в каждый из интервалов группирования Δi.
5. Вычисляется наблюдаемое значение статистики критерия
=
,
(3.32)
сравнивается с
табличным значением
,
найденным для уровня значимости α
и числа степеней свободы ν =
l-k-1,
где l
-
число
интервалов, k
– число
параметров, которыми определяется
функция распределения.
Если , то гипотеза о том, что генеральная совокупность Х подчиняется закону распределения F (x) принимается.
В
случае нормального закона распределения
вероятность попадания случайной величины
Х в соответствующие интервалы вычисляется
по интегральной теореме Лапласа:
рi
=
Р(аi<x<bi)
=
,
(3.33)
где t1i
=
,
t2i
=
;
аi
,bi
–
нижняя и
верхняя граница соответствующего
интервала i.