
- •Авторы-составители:
- •1.Цели и задачи дисциплины
- •1). Цель, задачи, структура дисциплины и ее место в учебном процессе.
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины Объем дисциплины и виды учебной работы Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •1. Основные понятия, определения и теоремы теории вероятностей* Введение
- •1.1. Алгебра событий. Основые понятия теории множеств
- •1.2. Основные определения: испытание, событие. Классификация событий
- •1.3. Классическое определение вероятности. Свойства, вытекающие из этого определения
- •Значение вероятности
- •1.4. Основные теоремы теории вероятностей
- •1.5. Зависимые и независимые события
- •2. Формула полной вероятности и формула Бейеса
- •2.1. Формула полной вероятности
- •3. Случайные величины
- •3.1. Дискретные случайные величины
- •Ряд распределения случайной величины X
- •3.4. Ожидаемое среднее значение дискретной случайной величины
- •Вычисление математического ожидания числа рекламных
- •3.5. Свойства математического ожидания случайной дискретной величины
- •Возможные исходы лотереи
- •3.6. Ожидаемое среднее значение функции случайной величины
- •Ряд распределения числа месячных продаж
- •К вычислению среднего ожидаемого значения
- •3.7. Дисперсия дискретной случайной величины
- •К вычислению дисперсии случайной величины
- •3.9. Дисперсия линейной функции случайной величины
- •4. Законы распределения дискретных случайных величин
- •Формула Бернулли. Биномиальные вероятности
- •4.3. Биномиальный закон распределения
- •Биномиальное распределение
- •Биномиальное распределение X – числа гербов, появляющихся
- •Фрагмент таблиц ряда и функции биномиального распределения
- •Биномиальное распределение числа покупателей
- •Распределения
- •4.5. Распределение Пуассона
- •Закон распределения Пуассона
- •Сравнение вероятностей, полученных по формулам Бернулли и Пуассона
- •4.6. Гипергеометрическое распределение
- •Гипергеометрический закон распределения
- •Биномиальный закон распределения
- •Гипергеометрическое распределение
- •4.7. Производящая функция
- •4.8. Мультиномиальное распределение
- •4.9. Геометрическое распределение
- •5. Непрерывные случайные величины
- •6. Законы распределения непрерывных случайных величин
- •7. Закон больших чисел
- •7.1. Принцип практической уверенности. Формулировка закона больших чисел
- •7.2. Неравенства Маркова и Чебышева
- •Выражения (7.1–7.2) справедливы для дискретных и непрерывных случайных величин.
- •7.4. Теорема Бернулли
- •7.5. Теорема Пуассона
- •Контрольные задания по курсу теории вероятностей Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
- •Вариант 31
- •Вариант 32
- •Вариант 33
- •Вариант 34
- •Вариант 35
- •Вариант 36
- •Вариант 37
- •Вариант 38
- •Вариант 39
- •Вариант 40
- •Математическая статистика Теория вероятностей и математическая статистика – основной инструментарий для прикладной статистики
- •Дисперсией случайной величины х называется число dx , равное математическому ожиданию квадрата отклонения случайной величины от своего математического ожидания: . (1.4)
- •Контрольные вопросы и задачи
- •Статистическое оценивание
- •Интервальная оценка для генеральной доли
- •Контрольные вопросы и задачи
- •Тема 3. Статистическая проверка гипотез
- •Общая логическая схема статистического критерия.
- •Проверка гипотезы о значении генеральной средней
- •Проверка гипотезы о значении дисперсии генеральной совокупности
- •Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- •Гипотеза об однородности рада вероятностей
- •Гипотезы о виде законов распределения генеральной совокупности
- •Контрольные вопросы и задачи
- •Тема 4. Методика статистического анализа количественных и качественных показателей
- •Контрольные вопросы и задачи
- •Тема 5. Многомерные статистические методы
- •Темы практических и семинарских занятий, тематических дискуссий
- •Задания для самостоятельной работы студентов
- •1.Методы анализов рядов динамики. Особенности моделирования рядов динамики с помощью корреляционного - регрессионного анализа
- •2. Понятие о закономерности распределения. Изучение формы распределения
- •3. Матрицы и таблицы сопряженности
- •4.Понятие о статистическом графике. Элементы статистического графика
- •5. Классификация видов графика: диаграммы сравнения, структурные диаграммы и диаграммы динамиков. Статистические карты
- •6. Условия типичности средних величин
- •7. Понятие малой выборки и методы расчета ее средней ошибки
- •8. Основные направления применения выборочного наблюдения в социально-экономических исследованиях
- •9. Взаимосвязи социально-экономических явлений и процессов, задачи их статического изучения.
- •10. Роль качественного анализа в исследовании связей
- •11. Основные статистические методы изучения связей в торговле и сфере услуг: метод параллельных данных, метод аналитических группировок, графический метод, балансовый метод.
- •12.Применение дисперсионного анализа в экономико-статистических исследованиях
- •13. Регрессионное уравнение как форма аналитического выражения статистических связей
- •14. Способы отбора факторных признаков при построении регрессионных моделей
- •15. Оценка результатов корреляционно-регрессионного анализа
- •7.Темы курсовых/контрольных работ/рефератов Варианты контрольных работ для студентов заочной формы обучения всех специальностей Вариант первый
- •Вариант второй
- •Вариант третий
- •Вариант четвертый
- •Вариант пятый
- •Вариант шестой
- •Вариант седьмой
- •Учебно-методическое обеспечение Литература:
- •16. Елисеева и.И., Юзбашев м.М. – Общая теория статистики. Учебник - м.: Финансы и статистика, 2005. Материально-техническое и информационное обеспечение дисциплин
1.2. Основные определения: испытание, событие. Классификация событий
Опыт (эксперимент, испытание) – это ситуация с более чем одним возможным исходом, из которых всегда имеет место точно одно так называемое элементарное событие. Исходом опыта может быть результат наблюдения или измерения.
Извлечение карты из колоды – эксперимент. Один из исходов эксперимента – извлечение дамы бубен. Бубновую даму можно извлечь из колоды, содержащей 36 карт и 52 карты. Число карт – условие испытания.
Единичный, отдельный исход эксперимента называется элементарным событием. Набор всех элементарных событий – пространство событий (множество).
Извлечение любой карты из колоды – элементарное событие. Полному набору событий соответствует полное множество X, относящееся к заданному эксперименту. Полный набор событий – набор всех возможных исходов эксперимента. Элементарному событию соответствует только одна точка пространства событий. Аналогом элементарного события является элемент множества.
Теория вероятностей изучает случайные события. Случайным событием называется событие, которое может произойти или не произойти в результате некоторого эксперимента (далее будем опускать термин «случайный»).
Событие – это любое подмножество пространства событий, набор элементарных исходов. В диаграммах Венна событию соответствует подмножество элементарных событий. Событие произошло, если в результате эксперимента произошло элементарное событие, принадлежащее этому поднабору. Например, элементарные события – «туз конкретной масти» – благоприятствуют случайному событию «туз».
События обычно обозначаются заглавными буквами латинского алфавита: А, В, С, D, Е, F и т. д. События можно классифицировать.
Достоверное событие – это событие, которое обязательно произойдет в результате испытания (подброшенный камень обязательно упадет на Землю вследствие действия закона притяжения). Достоверные события условимся обозначать символом Ω.
Невозможное событие – это событие, которое не может произойти в результате данного опыта (извлечение черного шара из урны с белыми шарами есть событие невозможное). Невозможное событие обозначим Ø.
Достоверные и невозможные события не являются случайными.
Совместные события – несколько событий называют совместными, если в результате эксперимента наступление одного из них не исключает появления других. (в магазин вошел покупатель. События «в магазин вошел покупатель старше 60 лет» и «в магазин вошла женщина» – совместные, так как в магазин может войти женщина старше 60 лет.)
Несовместные события – несколько событий называют несовместными в данном опыте, если появление одного из них исключает появление других (выигрыш, ничейный исход и проигрыш при игре в шахматы как результат одной партии – три несовместных события).
События называют единственно возможными, если в результате испытания хотя бы одно из них обязательно произойдет. Некоторая фирма рекламирует свой товар по радио и в газете. Обязательно произойдет одно и только одно из следующих событий: «потребитель услышал о товаре по радио», «потребитель прочитал о товаре в газете», «потребитель получил информацию о товаре по радио и из газеты», «потребитель не слышал о товаре по радио и не читал газеты». Это четыре единственно возможных события.
Несколько событий называют равновозможными, если в результате испытания ни одно из них не имеет объективно большей возможности появления, чем другие (при бросании игральной кости выпадение каждой из ее граней – события равновозможные).
Два единственно возможных и несовместных события называются противоположными (купля и продажа определенного вида товара есть события противоположные).
Полная группа событий – совокупность всех единственно возможных и несовместных событий.
Полную
группу можно определить так: если
=
Ω и Аi∩Аj
=
Ø
для любой пары
,
тогда
{A1,
A2,
..., Аn}
– полная
группа событий.