
- •Авторы-составители:
- •1.Цели и задачи дисциплины
- •1). Цель, задачи, структура дисциплины и ее место в учебном процессе.
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины Объем дисциплины и виды учебной работы Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •1. Основные понятия, определения и теоремы теории вероятностей* Введение
- •1.1. Алгебра событий. Основые понятия теории множеств
- •1.2. Основные определения: испытание, событие. Классификация событий
- •1.3. Классическое определение вероятности. Свойства, вытекающие из этого определения
- •Значение вероятности
- •1.4. Основные теоремы теории вероятностей
- •1.5. Зависимые и независимые события
- •2. Формула полной вероятности и формула Бейеса
- •2.1. Формула полной вероятности
- •3. Случайные величины
- •3.1. Дискретные случайные величины
- •Ряд распределения случайной величины X
- •3.4. Ожидаемое среднее значение дискретной случайной величины
- •Вычисление математического ожидания числа рекламных
- •3.5. Свойства математического ожидания случайной дискретной величины
- •Возможные исходы лотереи
- •3.6. Ожидаемое среднее значение функции случайной величины
- •Ряд распределения числа месячных продаж
- •К вычислению среднего ожидаемого значения
- •3.7. Дисперсия дискретной случайной величины
- •К вычислению дисперсии случайной величины
- •3.9. Дисперсия линейной функции случайной величины
- •4. Законы распределения дискретных случайных величин
- •Формула Бернулли. Биномиальные вероятности
- •4.3. Биномиальный закон распределения
- •Биномиальное распределение
- •Биномиальное распределение X – числа гербов, появляющихся
- •Фрагмент таблиц ряда и функции биномиального распределения
- •Биномиальное распределение числа покупателей
- •Распределения
- •4.5. Распределение Пуассона
- •Закон распределения Пуассона
- •Сравнение вероятностей, полученных по формулам Бернулли и Пуассона
- •4.6. Гипергеометрическое распределение
- •Гипергеометрический закон распределения
- •Биномиальный закон распределения
- •Гипергеометрическое распределение
- •4.7. Производящая функция
- •4.8. Мультиномиальное распределение
- •4.9. Геометрическое распределение
- •5. Непрерывные случайные величины
- •6. Законы распределения непрерывных случайных величин
- •7. Закон больших чисел
- •7.1. Принцип практической уверенности. Формулировка закона больших чисел
- •7.2. Неравенства Маркова и Чебышева
- •Выражения (7.1–7.2) справедливы для дискретных и непрерывных случайных величин.
- •7.4. Теорема Бернулли
- •7.5. Теорема Пуассона
- •Контрольные задания по курсу теории вероятностей Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
- •Вариант 31
- •Вариант 32
- •Вариант 33
- •Вариант 34
- •Вариант 35
- •Вариант 36
- •Вариант 37
- •Вариант 38
- •Вариант 39
- •Вариант 40
- •Математическая статистика Теория вероятностей и математическая статистика – основной инструментарий для прикладной статистики
- •Дисперсией случайной величины х называется число dx , равное математическому ожиданию квадрата отклонения случайной величины от своего математического ожидания: . (1.4)
- •Контрольные вопросы и задачи
- •Статистическое оценивание
- •Интервальная оценка для генеральной доли
- •Контрольные вопросы и задачи
- •Тема 3. Статистическая проверка гипотез
- •Общая логическая схема статистического критерия.
- •Проверка гипотезы о значении генеральной средней
- •Проверка гипотезы о значении дисперсии генеральной совокупности
- •Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- •Гипотеза об однородности рада вероятностей
- •Гипотезы о виде законов распределения генеральной совокупности
- •Контрольные вопросы и задачи
- •Тема 4. Методика статистического анализа количественных и качественных показателей
- •Контрольные вопросы и задачи
- •Тема 5. Многомерные статистические методы
- •Темы практических и семинарских занятий, тематических дискуссий
- •Задания для самостоятельной работы студентов
- •1.Методы анализов рядов динамики. Особенности моделирования рядов динамики с помощью корреляционного - регрессионного анализа
- •2. Понятие о закономерности распределения. Изучение формы распределения
- •3. Матрицы и таблицы сопряженности
- •4.Понятие о статистическом графике. Элементы статистического графика
- •5. Классификация видов графика: диаграммы сравнения, структурные диаграммы и диаграммы динамиков. Статистические карты
- •6. Условия типичности средних величин
- •7. Понятие малой выборки и методы расчета ее средней ошибки
- •8. Основные направления применения выборочного наблюдения в социально-экономических исследованиях
- •9. Взаимосвязи социально-экономических явлений и процессов, задачи их статического изучения.
- •10. Роль качественного анализа в исследовании связей
- •11. Основные статистические методы изучения связей в торговле и сфере услуг: метод параллельных данных, метод аналитических группировок, графический метод, балансовый метод.
- •12.Применение дисперсионного анализа в экономико-статистических исследованиях
- •13. Регрессионное уравнение как форма аналитического выражения статистических связей
- •14. Способы отбора факторных признаков при построении регрессионных моделей
- •15. Оценка результатов корреляционно-регрессионного анализа
- •7.Темы курсовых/контрольных работ/рефератов Варианты контрольных работ для студентов заочной формы обучения всех специальностей Вариант первый
- •Вариант второй
- •Вариант третий
- •Вариант четвертый
- •Вариант пятый
- •Вариант шестой
- •Вариант седьмой
- •Учебно-методическое обеспечение Литература:
- •16. Елисеева и.И., Юзбашев м.М. – Общая теория статистики. Учебник - м.: Финансы и статистика, 2005. Материально-техническое и информационное обеспечение дисциплин
Вариант 19
Задача 1. В урне 10 белых, 8 черных и 12 красных шаров, Наудачу извлечены 2 шара. Какова вероятность того, что вынутые шары разного цвета, если известно, что не вынут красный шар?
Задача 2. Вероятность того, что новый товар будет пользоваться спросом на рынке, если конкурент не выпустит в продажу аналогичный продукт, равна 0,67. Вероятность того, что товар будет пользоваться спросом при наличии на рынке конкурирующего товара, равна 0,42. Вероятность того, что конкурирующая фирма выпустит аналогичный товар на рынок в течение интересующего нас периода, равна 0,35. Чему равна вероятность того, что товар будет иметь успех?
Задача 3. Два строительных контракта случайным образом распределяются среди трех фирм: I, II, III. Любая фирма может получить или один, или оба контракта. С каждого полученного контракта прибыль фирмы составит 90000 условных денежных единиц.
а) Найдите ожидаемую прибыль фирмы I.
б) Если фирмы I и II принадлежат одному владельцу, то какова ожидаемая общая прибыль владельца?
Задача 4. Пусть X – нормально распределенная случайная величина с математическим ожиданием а=16 и со средним квадратическим отклонением σ=3. Найдите: а)Р(11<X<20); б) Р(17<X<49); с) Сумму вероятностей Р(17<X<19) и P(X >15).
Задача 5. В цехе 20 рабочих мест. Вероятности допущения брака при изготовлении однотипных деталей распределены следующим образом:
-
Количество рабочих мест Ki
2
4
6
8
pi
0.01
0,02
0,03
0,04
С каждого рабочего места случайным образом отобрано по одной детали. Определите вероятность того, что выборочная относительная частота появления бракованной детали будет отличаться от средней вероятности менее чем на 0,1.
Задача 6. Составьте задачу по изученному материалу курса теории вероятностей, используя предметную область экономики. Решите задачу и приведите пояснения.
Вариант 20
Задача 1. На сахарном заводе один из цехов производит рафинад. Контроль качества обнаружил, что один из ста кусочков сахара разбит. Если Вы случайным образом извлекаете два кусочка сахара, то чему равна вероятность того, что, по крайней мере, один из них будет разбит? (Предполагаем независимость событий, это предположение справедливо вследствие случайности отбора).
Задача 2. Детали для обработки поступают из двух заготовительных цехов: из первого цеха – 70%, из второго – 30%, причем продукция первого цеха имеет 10% брака, а продукция второго цеха – 20% брака. Какова вероятность того, что случайно взятая деталь будет без дефектов?
Задача 3. Число телефонных звонков, поступающих в справочное бюро от абонентов между полуднем и часом дня в любой день недели, есть случайная величина X, заданная так:
-
xi
0
1
2
3
4
5
P(X)=pi
0,3
0,2
0,2
0,1
0,1
0,1
а) Убедиться, что задан ряд распределения.
б) Найти функцию распределения случайной величины X.
в) Используя F{x}, определить вероятность того, что между 12 ч 34 мин и 12 ч 35 мин в справочное бюро поступит больше двух звонков.
Задача 4. Еженедельный выпуск продукции на заводе распределен приблизительно по нормальному закону со средним значением а=134786 ед. продукции в неделю и σ=13000 ед. Найдите вероятность того, что еженедельный выпуск продукции:
а) превысит 150000 ед.;
б) окажется ниже 100000 ед. в данную неделю;
в) предположим, что возникли трудовые споры и недельный выпуск продукции стал ниже 80000 ед. Менеджеры обвиняют профсоюзы в беспрецедентном падении выпуска продукции, а профсоюзы утверждают, что выпуск продукции находится в пределах принятого уровня (±3σ). Доверяете ли Вы профсоюзам?
Задача 5. Среднее значение расхода воды в населенном пункте составляет 30000 л в день. Оцените вероятность того, что в этом населенном пункте расход воды не будет превышать 100000 л в день.
Задача 6. Составьте задачу по изученному материалу курса теории вероятностей, используя предметную область экономики. Решите задачу и приведите пояснения.